Math 109: The first exam. Instructor: A. Salehi Golsefidy

Name:	
PID:	
10/18	5/2016

- 1. Write your Name and PID on the front of your exam sheet.
- 2. No calculators or other electronic devices are allowed during this exam.
- 3. Show all of your work; no credit will be given for unsupported answers.
- 4. Read each question carefully to avoid spending your time on something that you are not supposed to (re)prove.
- 5. Ask me or a TA when you are unsure if you are allowed to use certain fact or not.
- 6. Good luck!

Question	Points	Score
1	10	
2	17	
3	10	
4	3	
Total:	40	

- 1. (10 points) Which one of the following propositional forms is NOT equivalent to $P \Rightarrow (Q \lor R)$? Justify your answer.
 - 1. $(P \wedge (\neg Q)) \Rightarrow R$.
 - 2. $(P \wedge (\neg Q) \wedge (\neg R)) \Rightarrow \bot$, where \bot means contradiction.
 - 3. $(P \Rightarrow Q) \land (P \Rightarrow R)$.
 - 4. $(\neg P) \lor Q \lor R$.
 - 5. $((\neg Q) \land (\neg R)) \Rightarrow (\neg P)$.

(You have to only prove why your chosen propositional form is not equivalent to $P \Rightarrow (Q \vee R)$. You do NOT need to argue why the rest are equivalent.)

2.	Determine	if	the	following	propositions	are	true	or	not.	Briefly	justify	your
	answer.											

(a) (4 points) For any positive integers $a,b,\,10|ab$ implies that either 10|a or 10|b.

(b) (4 points) For integers a and b, a|b implies $|a| \leq |b|$.

(c) (4 points) For any two real numbers x, y, we have $x^2 + y^2 \ge 2xy$.

(d) (5 points) There are integers m and n such that 21m - 14n = 2.

3. (10 points) Let $a_0 = 0$, $a_1 = 1$, and $a_{n+1} = a_n + 6a_{n-1}$ for any positive integer n. Prove that for any positive integer n we have that $a_n = (3^n - (-2)^n)/5$.

4. (3 points) Suppose a_1, a_2, a_3 are integers. Prove that $(a_1 - a_2)(a_2 - a_3)(a_3 - a_1)$ is even. (Hint: $(a_1 - a_2) + (a_2 - a_3) + (a_3 - a_1) = 0$.)