Proper ideals do not have units
In the previous lecture we defined what an ideal is:
Def. Let R be a ring. A nonempty subset I of R is called a ring if (1) $\forall x, y \in I, x-y \in I$ (I is a subgp of $(R,+)$)
(2) $\forall r \in R, x \in I, \quad r x, x r \in I$.

And we write $I \triangleleft R$.
Ex. $\{0\}$ and R are ideals of R for any ring R.
Ex. Suppose R is a unital ring, $I \triangleleft R$, and $1 \in I$.
Then $I=R$.
Pf. Since $1 \in I$ and I is an idea, for any $r \in R$ we have $r \cdot 1=r \in I$. So $I=R$.

Ex. Suppose R is a unital ring, and $I \triangleleft R$.
If $I n U(R) \neq \varnothing$, then $I=R$. (Alternatively we can say: if I is a proper ideal of R, then $I_{\cap} U(R)=\varnothing$.)

Pf. Suppose $a \in I \cap U(R)$. Then, since I is an ideal and $a \in I$, $\left(a^{-1}\right)(a)=1 \in I$. So by the prexious example $I=R$.

Ideals of a field and the ring of integers
Thursday, August 24, 2017 8:57 PM
Ex. Suppose F is a field. Then $I \triangleleft F$ if and only if either $I=\{0\}$ or $I=F$.

Pf. If $I \neq\{0\}$, then $\operatorname{In}(F \backslash\{0\}) \neq \varnothing$. Since $U(F)=F\{\{ \}$, we get that $I \cap U(F) \neq \varnothing$. Hence by the previous example $I=F$.

Lemma. I \mathbb{Z} if and only if $\exists n \in \mathbb{Z}, I=n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$.
Pf. $(\Leftarrow) \cdot x=n k, y=n l \Rightarrow x-y=n k-n l=n(\underbrace{(k-l)}_{\epsilon \mathbb{Z}}$
$\rightarrow x-y \in n \mathbb{Z}$.

$$
\text { -x=nk, } \begin{aligned}
r \in \mathbb{Z} & \Rightarrow r x=x r=n(k r) \\
& \Rightarrow r x, x r \in n \mathbb{Z} .
\end{aligned}
$$

\Leftrightarrow In fact any subgroup of $(\mathbb{Z},+)$ is of the form $n \mathbb{Z}$, for some $n \in \mathbb{Z}$:

If $I=0$, then there is nothing to prove.
If $\exists x \in I \backslash\{0\}$, then either $x \in I \cap \mathbb{Z}^{+}$or $-x \in \operatorname{In} \mathbb{\mathbb { Z }}$.
So $\operatorname{In} \mathbb{Z}^{+}$is a non-emply subset of \mathbb{Z}^{+}. Hence by the

Ideals and principal ideals
well-ordering principle $I_{n} \mathbb{Z}^{+}$has a minimum; let $n=\min I_{n} \mathbb{Z}^{+}$.
Then, as I is subgroup of $(\mathbb{Z},+)$, we get that $n \mathbb{Z} \subseteq I$.
Claim. $n \mathbb{Z}=I$.
Pf of claim. Suppose $m \in I$. By the division algorithm $\exists(q, r) \in \mathbb{Z} \times \mathbb{Z}$ st. (1) $m=n q+r$,
(2) $0 \leq r<n$.

So $r=m-n q \in I$ as $m, n q \in I$. Since n is the smallest element of $\operatorname{In} \mathbb{Z}^{+}$and $r<n$, we deduce that $r \notin I n \mathbb{Z}^{+}$. As $r \in I$ and $r \notin I n \mathbb{Z}^{+}$, we get that $r \notin \mathbb{Z}^{+}$. Because $r \in \mathbb{Z}^{+}$and $0 \leq r<n$, we have $r=0$; this implies $m=n q \in n \mathbb{Z}$.

Def. Let R be a ring, and X be a non-empty subset of R. The smallest ideal of R which contains X is called the ideal generated by x; and it is denoted by $\langle x\rangle$. An ideal generated by one element is called a principal ideal.

Ring of polynomials with coefficients in a field is a PID
The previous lemma shows that any ideal of \mathbb{Z} is principal.
Def. An integral domain D is called a
Principal Ideal Domain (PID) if any ideal is principal.
Ex. \mathbb{Z} is a PID.
Theorem. Let F be a field. Then $F[x]$ is a PID.
(Its proof is fairly similar to the previous proof, and it is based on the division algorithm in $F[x]$. This method can be applied for other rings as well.)
Proof. Let $I \triangleleft F[x]$. If $I=\{0\}$, there is nothing to prove.
If not, let $f_{0}(x) \in I$ be such that

$$
\operatorname{deg} f_{0}=\min \{\operatorname{deg} g \mid g \in I, g \neq 0\}
$$

(By the well-ordering principle there is such a polynomial f_{0}).
Claim. $I=\left\langle f_{0}\right\rangle$.
If of claim. Suppose $g(x) \in I$. Then by the division algorithm there are $q, r \in F[x]$ such that
$F[x]$ is a PID.
Thursday, August 24, 2017
(1) $g(x)=f_{0}(x) q(x)+r(x)$,
(2) $\operatorname{deg} r<\operatorname{deg} f_{0}$.

Since $f_{0}(x) \in I$ and I is an ideal, we have $f_{0}(x) q(x) \in I$.
As $g(x) \in I$ and $f_{0}(x) g(x) \in I$, we get that

$$
r(x)=g(x)-f_{0}(x) g(x) \in I .
$$

Since $\operatorname{deg} f_{0}=\min \{\operatorname{deg} f \mid f \in I, f \neq 0\}, \operatorname{deg} r<\operatorname{deg} f_{0}$, and $r \in I$, we deduce that $r=0$; this implies

$$
g(x)=f_{0}(x) q(x) \in\left\langle f_{0}(x)\right\rangle
$$

We quickly defined the ideal generated by a non-empty subset X, and we did not justify our definition:

Lemma. Let $\left\{I_{a} \mid a \in A\right\}$ be a family of ideals of a ring R. Then $\bigcap \bigcap_{a \in A} I_{a}$ is an ideal of R. In particular for a ron-empty subset X of $R, \bigcap_{I \triangleleft R} I$ is an ideal

PP. $x, y \in \bigcap_{a \in A} I_{a} \Rightarrow \forall a \in A, x, y \in I_{a} \Rightarrow \forall a \in A, x-y \in I_{a}$

Elements of a principal ideal
Thursday, August 24, 2017
So $x-y \in \bigcap_{a \in A} I_{a}$.
. Suppose $x \in \bigcap \bigcap_{a \in A} I_{a}$ and $r \in R$. Then, for any $a \in A$, we have $x \in I_{a}$. Since I_{a} is an ideal, $x \in I_{a}$, and $r \in R$, we get $r x, x r \in I_{a}$ (for any $a \in A$). Hence

$$
r x, x r \in \bigcap_{a \in A} I_{a}
$$

- Let $J:=\bigcap_{\mathrm{I} \varangle \mathbb{R}} I$. Then, by the first part, $J \triangleleft R$; and clearly $X \subseteq \delta$.

Now, if $x \subseteq I^{\prime}$ and $I^{\prime} \not \AA^{R}$, then $I^{\prime} \supseteq \bigcap_{I \mathbb{R}} I=J$.
So J is the smallest ideal which contains X.
Lemma. Let R be a commutative unital ring. For $a \in R$, we have $\langle a\rangle=a R=\{a r \mid r \in R\}$.

Pf. (叉) Since $a \in\langle a\rangle$, for any $r \in R$ we have are<a>. So $\langle a\rangle \supseteq a R$.
(\subseteq) Since R is unital, $a \in a R$. So using the previous lemma, it is enough to show $a R$ is an ideal.

Ideals and the kernels of ring homomorphisms
Thursday, August 24, 2017 11:57 PM

- $\forall r_{1}, r_{2} \in R, \quad a r_{1}-a r_{2}=a \underbrace{\left.r_{1}-r_{2}\right)}_{\text {in } R}$. So $a r_{1}-a r_{2} \in a R$.
- $\forall r, r^{\prime} \in R, \quad r\left(a r^{\prime}\right)=\left(a r^{\prime}\right) r=a(\underbrace{r^{\prime} r}_{\text {in } R}$.

So $r\left(a r^{\prime}\right),\left(a r^{\prime}\right) r \in a R$.
Why should we care about ideals?
Next we will see that
I is an ideal of R if and only if there is a ring homomorphism
$\phi: R \rightarrow R^{\prime}$ such that

$$
\operatorname{ker}(\phi)=I
$$

We will show this in many steps and along the way we will define the quotient ring of R by I.

Let's start by proving (\Leftrightarrow).
Lemma. Suppose $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism. Then her ϕ is an ideal of R.

Proof. Since ϕ is an additive group homomorphism, $\operatorname{ker} \phi$ is a subgroup of $(R,+)$. Now suppose $x \in \operatorname{ker} \phi$ and $r \in R$.

The quotient ring

Then $\phi(r x) \stackrel{=}{=} \phi(r) \phi(x)$

$$
=(\phi(r))(0)=0 ; x \in \operatorname{ker} \phi
$$

this implies $r x \in k e r \phi$. Similarly we have

$$
\phi(x r)=\phi(x) \phi(r)=(0)(\phi(r))=0 \text {; and so }
$$ $x r \in \operatorname{ker} \phi$.

Therefore er ϕ is an ideal of R.
Next starting with an ideal I of R, we will construct the quotient ring of R by I:

Lemma. Suppose $I \triangleleft R$. Let $(x+I) \cdot(y+I)=x y+I$. Then this is a well-defined binary operation on R / I and $(R / I,+,$.$) is a ring. (It is called the quotient ring of$ R by I.)

Before we prove this lemma, let's recall the group theoretic counterpart of this concept. For a group G, a subgroup N is called a normal subgroup if, for any $g \in G, g N=N g$.

The quotient ring

In group theory, you have seen that, if N is a normal subgp of G, then $\left(g_{1} N\right) \cdot\left(g_{2} N\right)=g_{1} g_{2} N$ defines a well-defined binary operation on the set G / N of (left) corsets of N in G. And $(G / N, \cdot)$ is a group.

Since, for a ring $R,(R,+)$ is an abelian group, any subgroup is a normal subgroup; so $(R / I,+)$ is a group if I is an ideal of R.

Proof of Lemma.
Well-definedness.

$$
\left.\begin{array}{l}
x_{1}+I=x_{2}+I \\
y_{1}+I=y_{2}+I
\end{array}\right\} \stackrel{?}{\Longrightarrow} \quad x_{1} y_{1}+I=x_{2} y_{2}+I
$$

Pf. From group theory we know that

$$
\begin{align*}
& x_{1} y_{1}+I=x_{2} y_{2}+I \Leftrightarrow x_{1} y_{1}-x_{2} y_{2} \in I ; \\
& x_{1}+I=x_{2}+I \Rightarrow x_{1}-x_{2} \in I \tag{1}\\
& y_{1}+I=y_{2}+I \Rightarrow y_{1}-y_{2} \in I \tag{2}
\end{align*}
$$

we have $x_{1} y_{1}-x_{2} y_{2}=x_{1} y_{1}-x_{2} y_{1}+x_{2} y_{1}-x_{2} y_{2}$

The quotient ring

The distributive property and the associativity can be deduced from the fact that R is a ring.

Lemma. Suppose I is an ideal of a ring R. Then

$$
\pi: R \rightarrow R / I, \pi(r)=r+I
$$

is a surjective ring homomorphism; and jer $\pi=I$. (we call π the natural quotient map.)

Pf. From group theory, we know that π is a surjective group homomorphism of $(R,+)$ to $\left(R / I^{\prime}+\right)$; and er $\pi=I$.

So it is enough to check that π preserves multiplication:

$$
\pi\left(r_{1}\right) \cdot \pi\left(r_{2}\right)=\left(r_{1}+I\right) \cdot\left(r_{2}+I\right)=r_{1} r_{2}+I=\pi\left(r_{1} r_{2}\right),
$$

and the claim follows.

These lemmas show us that
I is an ideal of $R \Longleftrightarrow \exists$ a ring homomorphism $\phi: R \rightarrow R^{\prime}$ such that er $\phi=I$.

