Irreducible elements Sunday, August 20, 2017 10:30 PM Det. Let R be a unital commutative ring. An element xeR is called irreducible if $\bigcirc x \neq 0$, x is not a zero divisor, and $x \notin U(R)$. (2) For a, be R, $\chi = ab \Rightarrow (either a \in U(R) \text{ or } b \in U(R))$. Ex. $x \in \mathbb{Z}$ is irreducible $\Leftrightarrow x \neq 0$, $x \neq \pm 1$, and the only positive divisors of x are 1 and 1x1. (You have been calling such number "prime". We use the word "prime" for another type of elements; and we will show xeZ is irreducible it is prime.) Ex. Let F be a field. Then $f(x) \in F[x]$ is irreducible \Leftrightarrow () deg $f \geq 1$ 2 fix cannot be written as a product of non-constant polynomials.

Irreducible polynomials Sunday, August 20, 2017 10:44 PM PP. Ince F is a field, FIXI is an integral domain. So it does not have a zero divisor. And U(FIXJ) = U(F)= F\ 208. $\deg f \geq 1$. So If f(x) = a(x) b(x), then either $a(x) \in U(F(x)) = F \setminus \delta d$ or b(x) e U(F[x]) = F \ E.S; which implies that f cannot be written as a product of non-constant polynomials. (E) Since U(FIXJ) = F183 and FIXJ is an integral domain, deg f 21 implies f=0, f is not a zero-divisor, and f is not a unit. fix = a (x) b(x) => (either deg a = o or deg b=). $f_{\neq 0} \rightarrow (a_{\neq 0} \text{ and } b_{\neq 0}).$ So either a EF1303 = U(FIX) or b F1208 = U(FIX) Ex. 2x is irreducible in Q[x]; but it is reducible ethat means not irreducible) in ZERJ. (Either 2 or x are not units in ZEXJ.

Irreducibility of degree 2 and 3 polynomials
Sunday, August 20, 2017 10:53 PM
Lemma. Let F be a field. Suppose
$$f \in F[x]$$
 and
 $2 \leq deg f \leq 3$. Then f is reducible in FIXI if and
only if f has a zero in F.
 $Pf: (\Rightarrow) \equiv a, b \in F[x], deg a, deg b \geq 1$ and
 $ab = f \cdot Since F$ is a field, we have
 $deg a + deg b = deg f \cdot As deg a, deg b \geq 1$ and $deg f \leq 3$,
either deg a=1 or deg b=1. Without loss of generality,
we can and will assume $deg a = 1$. So $a(x) = c_0 + c_1 x$
and $c_1 \neq o$. Therefore $f(-c_0 c_1^{-1}) = a(-c_0 c_1^{-1}) b(-c_0 c_1^{-1})$
 $= 0$.
 c_{\pm}) If f has a zero a \in F, then by the factor theorem
 $\equiv g(x) \in F[x]$ such that $f(x) = (x - x)g(x)$.
So deg $g + deg(x - x) = deg f \Rightarrow$
 $deg g = deg f - 1 \geq 1$.
Hence f is reducible.

Irreducible polynomials Sunday, August 20, 2017 11:14 PM E_{x} . Show that $x^{2}+1$ is reducible in CIXI and irreducible in REXI. Solution. $x^2+1=(x+i)(x-i)$ and $deg(x\pm i) \ge 1$. So $x^{2}+1$ is reducible in C[X]. . Suppose x2+1 is reducible in R[x]. Then by the previous kemma, it has a zero in R; which is a contradiction. Ex. Show that $f(x) = x^3 + 3x^2 + 2x + 5$ is reducible in REX. Solution. It is enough to show f has a zero in \mathbb{R} . Notice that, since $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to -\infty} f(x) = -\infty$, $x \to \infty$ for large enough a, we have frais so and for small enough b are have f(b) < o. Since f is continuous, I becka such that f(c)=o. Remark. Using a similar argument one can show: $(fon \in \mathbb{R}[x], deg f > 1, deg f odd) \Rightarrow f has a$ zero in IR =>f is reducible in R[x].

Having a zero in Q Monday, August 21, 2017 1:32 PM <u>Ex.</u> Is $x^3 - x + 2$ irreducible in Q[x]? Solution. Since deg (x3-x+2), by a Lemma, it is irredu. in QIXI exactly when it does not have a zero in Q. So suppose b_c is a zero of $x^3 - x + 2$ where $b, c \in \mathbb{Z}$, $c \neq o$, and gcd (b,c) = 1. Hence $\left(\frac{b}{c}\right)^3 - \left(\frac{b}{c}\right) + 2 = o$. After clearing the denominator, we get $b^{3} - bc^{2} + 2c^{3} = 0$. So $-2c^3 = b(b^2 - c^2)$ which implies $b | -2c^3$, and $b \neq 0$ Since gcd(b,c)=1 and $b|-2c^3$, we deduce b|2. Similarly $-b^3 = c(-bc+2c^2)$ implies $c[-b^3]$. Since gcd(b,c) = 1 and $c|-b^3$, are deduce c|1. Hence $b_{c} \in \{\pm 1, \pm 2\}$. Since $\frac{x \ 1 \ -1 \ 2 \ -2}{x^{3} - x + 2}$ 2 2 8 -4 we deduce that $x^3 + x + 2$ does not have a zero in Q, and so it is irreducible in Q [x]. 🗉 The above method is fairly effective in finding out whether

Having a zero in Q Monday, August 21, 2017 an integer polynomial has a zero in Q. Lemma. Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n \in \mathbb{Z}[x]$, $a_{s} \neq 0$, and $a_{n} \neq 0$. If $f(\frac{b}{c}) = 0$ for $b, c \in \mathbb{Z}$, $c\neq o$, and gcd(b,c)=1, then bla, and clan. $\frac{\operatorname{Proof}}{\operatorname{coof}} \quad \operatorname{a}_{n}\left(\frac{b}{c}\right)^{n} + \operatorname{a}_{n-1}\left(\frac{b}{c}\right)^{n-1} + \dots + \operatorname{a}_{1}\left(\frac{b}{c}\right) + \operatorname{a}_{0} = 0$ implies $a_n b_n^n + a_{n-1} b_n^{n-1} + a_n b_n^{n-1} + a_n c_n^n = 0$. So $b(a_{n}b^{n-1}+a_{n-1}b^{n-2}c+...+a_{n}c^{n-1})=-a_{0}c^{n}$, which implies bl-a, cⁿ. Since gcd (b, c)=1 and bl-a, cⁿ, we deduce that bla. By 🛞, we also get $(a_{n-1}b^{n-1}+a_{n-2}b^{n-2}c+\dots+a_{1}bc^{n-2}+a_{n-1}c)c = -a_{n}b^{n}.$ in Z So $c \left[-a_n b^n\right]$, which, together with gcd(c,b)=1, implies $C[a_n . \blacksquare$

Using the residue maps to study irreducibility Monday, August 21, 2017 1:52 PM Ex. Suppose $f(x) = x^n + a_{n-1} x^{n-1} + \dots + a_1 x + 1 \in \mathbb{Z}$ [x]. Then fhas a zero in Q if and only if either f(1)=0 or f(-1)=0. $\frac{\text{Proof.}}{(\Leftarrow)}$ is clear as $\pm 1 \in \mathbb{Q}$. (\Rightarrow) By the previous lemma, if $f(\frac{b}{c}) = o$ for $b, c \in \mathbb{Z}, c \neq 0, gcd(b, c) = 1, then b[1 and c]1.$ So b e & -1, 1 &, which means either f(1)=0 or f(-1) = 0Another important technique is using the residue maps: recall that, for any integer n, $c_n: \mathbb{Z} \to \mathbb{Z}_n$, $c_n(\alpha) = \alpha \mathbb{1}_{\mathbb{Z}_n}$ is a ring homomorphism. We can extend it to the ring of polynomials. Lemma $c_n: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_n[x], c_n(\sum_{i=0}^{\infty} a_i x^i) = \sum_{i=0}^{\infty} c_n(a_i) x^i$ is a ring homomorphism . $\underline{\mathcal{H}}_{i=0}^{\infty} c_n \left(\sum_{i=0}^{\infty} \alpha_i x^i + \sum_{i=0}^{\infty} b_i x^i \right) = c_n \left(\sum_{i=0}^{\infty} (\alpha_i + b_i) x^i \right)$ $\frac{def. + c_n}{def. + c_n} = \sum_{i=n}^{\infty} c_n (a_i + b_i) \chi^2$

Using the residue maps to study Irreducibility

Monday, August 21, 2017 3:57 PM

$$\begin{aligned} \sum_{i=0}^{\infty} \mathbb{Z}_{n} = \sum_{i=0}^{\infty} (c_{n}(\alpha_{i}) + c_{n}(b_{i})) x^{i} \\ \text{is a ring brows} = \sum_{i=0}^{\infty} c_{n}(\alpha_{i}) x^{i} + \sum_{i=0}^{\infty} c_{n}(b_{i}) x^{i} \\ \text{addition in} = c_{n}(\sum_{i=0}^{\infty} \alpha_{i} x^{i}) + c_{n}(\sum_{i=0}^{\infty} b_{i} x^{i}) \\ \text{idef. of } c_{n} \\ x_{n}(x) = c_{n}((\sum_{i=0}^{\infty} \alpha_{i} x^{i})) = c_{n}(\sum_{k=0}^{\infty} (\sum_{j=0}^{k} \alpha_{j} b_{k-k}) x^{k}) \\ = \sum_{k=0}^{\infty} c_{n}(\sum_{l=0}^{k} \alpha_{l} b_{k-l}) x^{k} \\ = \sum_{k=0}^{\infty} c_{n}(\alpha_{i}) x^{i} (\sum_{i=0}^{\infty} a_{i} b_{k-k}) x^{k} \\ = \sum_{k=0}^{\infty} (\sum_{l=0}^{k} c_{n}(\alpha_{l}) c_{n}(b_{k-l})) x^{k} \\ = (\sum_{i=0}^{\infty} c_{n}(\alpha_{i}) x^{i}) (\sum_{i=0}^{\infty} c_{n}(b_{i}) x^{i}) \\ = c_{n}(\sum_{i=0}^{\infty} \alpha_{i} x^{i}) c_{n}(\sum_{i=0}^{\infty} b_{i} x^{i}) \\ \text{(Exercise. Determine the reasoning behind each equality.)} = \\ \text{Corllary Let } g(x) = \alpha_{r} x^{r} + \alpha_{r-1} x^{r-1} + \dots + b_{0}. \text{ Suppose } g, he \mathbb{Z}[x], \\ \text{and } p \text{ is a prime which does not divide } \alpha_{r} b_{s}. \\ \text{Then } c_{p}(gh) = c_{p}(g) c_{q}(h) \text{ and } deg(c_{p}(g)) = r \text{ and} \\ deg(c_{p}(h)) = s. \end{aligned}$$

Using the residue maps to study Irreducibility

Monday, August 21, 2017 4:15 PM

Pf. By the previous lemma,
$$C_p: \mathbb{Z} [X] \longrightarrow \mathbb{Z}_p [X]$$
 is a ring
homomorphism. So $C_p(gh) = C_q(g) C_q(h)$.
Since $C_q(g) = C_p(a_r) X + C_p(a_{r-1}) X^{r-1} + \dots + C_p(a_o)$
and $C_p(a_r) \neq o$ (notice $p \nmid a_r$), we have
 $deg C_f(g) = r$.
Similarly, since $C_p(h) = C_q(b_s) X^{s} + \dots + C_p(b_o)$ and $C_p(b_s) \neq o$
(notice $p \nmid b_s$), we have $deg C_p(h) = s$. ■
Corollary. If $f(x) = x^n + a_{n-1} x^{n-1} + \dots + a_o \in \mathbb{Z} [X]$ has a
zero in Q. Then It has a zero in \mathbb{Z}_m for any integer
 $m \ge 2$. (Here it, in fact, refers to $C_m(f)$.)
Pf. If $f(\frac{b}{C}) = o$, $b, c \in \mathbb{Z}$, $c \neq o$, and $gcd(b, c) = 1$, then
 c divides the leading coefficient, which is 1. So $c = \pm 1$;
and this implies f has a zero, say d , in \mathbb{Z} . So
 $d^n + a_{n-1} d^{n-1} + \dots + a_o = o$, which implies
 $C_n(d)^n + C_m(a_{n-1}) C_m(d)^{n-1} + \dots + C_m(a_o) = o$. Hence $C_m(d)$ is a
zero of $C_m(f)$. ■

Using the residue maps and Fermat's theorem Monday, August 21, 2017 4:29 PM Let's use the above corollary to give a quick answer to the next question. Ex. ls x³-x+2 irreducible in Q[x]? Solution. Since deg $(x^3 - x + 2) = 3$, it is irreducible exactly when it has no zero in Q. If it has a zero in Q, then using the previous corollary x³-x+2 has a zero in Z3. But by Fermat's theorem $\forall a \in \mathbb{Z}_3$, $a^3 = a$; and so $a^3 = a + 2 = 2 \neq o$. Hence $X^3 - X + 2$ does not have a zero in \mathbb{Z}_3 ; so it does not have a zero in Q, which implies it is irreducible in QIX. Using Fermat's theorem we can find out whether a polyno. with large degrees has a zero in \mathbb{Z}_p (if p is small). The key tool is the following: Lemma. Let p be prime, and $n \in \mathbb{Z}^+$. Then for any $a \in \mathbb{Z}_{p}$, a = a.

Finding zeros and Fermat's theorem Monday, August 21, 2017 4:38 PM <u>PP</u>. We proceed by induction on n. Base of induction (n=1). This case is given by Fermat's theorem. Inductive step. Suppose a = a for any a < Zp. $\begin{array}{c} \omega e'd \text{ like to show } \alpha^{\binom{k+1}{}} = \alpha \\ \begin{pmatrix} p^{k+1} \\ \alpha \end{pmatrix} = \begin{pmatrix} p^{k} \\ \alpha \end{pmatrix}^{p} = \alpha^{p} \\ \downarrow \alpha \end{pmatrix} = \alpha^{p} = \alpha$ Ex. Does $x^{(5^0)} - x + 2$ have a zero in \mathbb{Z}_5 ? <u>Solution</u>. By the previous lemma, for any $a \in \mathbb{Z}_5$, we have $a^{(5^{10})} - a + 2 = a - a + 2 = 2 \neq 0$. So $x^{(5^{10})} - x + 2$ does not have a zero in \mathbb{Z}_5 . E_{X} . Does X = X+2 have a zero in Q? Solution. Since the leading coefficient is 1, if x = x+2 has a zero in Q, it has a zero in Z. So $x^{(5^{10})}_{-x+2}$ has a zero in \mathbb{Z}_5 , which contradicts the previous example.

Finding zeros and Fermat's theorem Monday, August 21, 2017 9:52 PM Ex. Does $x^{50} x + 2$ have a zero in \mathbb{Z}_5 ? Solution. We write 50 in base -5: $50 = (5^2)(2)$. For any $a \in \mathbb{Z}_5$, $a^{50} - a + 2 = (a^2)^{-} - a + 2$ $= \alpha^{2} - \alpha + 2$. Now that we have a polynomial with small degree we can evaluate at all the elements of \mathbb{Z}_5 . So X - X + 2 does not have a zero in \mathbb{Z}_5 .