Ring of polynomials: degree

Thursday, August 17, 2017

11:15 PM

In the previous lecture we defined the ring of polynomials with

coefficients in a ring R with an indeterminate x.

For
$$f(x) = \sum_{i=0}^{\infty} a_i x^i \in \mathbb{R}[x]$$
, we say

$$\deg f = \max \{ n \in \mathbb{Z}^+ \cup \{ -\infty \} \mid \alpha_n \neq \emptyset \}.$$

So, degree of the zero polynomial is defined to be $-\infty$;

and deg $(a_0 + a_1 x + \dots + a_n x^n) = n$ if $a_n \neq 0$.

 $Ex \cdot deg(1) = 0$ in any (non-zero) unital ring.

Ex. Find deg $(2x^2-1)(2x+1)$ in $\mathbb{Z}_{4}[x]$.

Solution $(2x^2-1)(2x+1) = 2^2x^3 + 2x^2 - 2x - 1$ $= 2x^2 - 2x - 1 .$

So $deg((2x^2-1)(2x+1)) = 2$

Notice that in the above example

$$deg(2x^2-1)=2$$
, $deg(2x+1)=1$, and

So, for a general ring R, in R[x] we do <u>NOT</u> have $\deg(fg) = \deg f + \deg g$.

Degree of product

Thursday, August 17, 2017 11:28 PM

A closer look at the previous example shows us why this

equality fails; it fails because of the zero divisors.

Lemma. Suppose R is a ring with no zero divisors. Then for any f, g ∈ RIXI, we have

$$deg fg = deg f + deg g$$
.

Proof. If either for g is zero, then fg-o.

So the LHS = -00 and the RHS = -00+ ... = -00

(as a convention: $-\infty + n = -\infty$ and $(-\infty) + (-\infty) = -\infty$.)

Suppose f and g are not zero; and

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_o , a_n \neq o ,$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_o, b_m \neq 0.$$

Then $f(x)g(x) = a_n b_m x^{n+m} + (terms of degree < n+m)$.

Since $a_n, b_m \neq 0$ and R has no zero divisor, $a_n b_m \neq 0$.

Hence deg fg = n+m = deg f + deg g.

Corollary. If R has no zero divisors, then RIXI does not

Units of a ring of polynomials

Thursday, August 17, 2017 11:38 PM

has no zero divisors. If D is an integral domain, then D[X]

is an integral domain.

Proof. If fg=0, then deg $fg=-\infty$. Since R has

no zero divisors, by Lemma, deg fg = deg f + deg g.

Since two integers cannot add up to -00, either

 $deg f = -\infty$ or $deg g = -\infty$; which implies either f = 0 or

g = o. Hence R[x] does NOT have a zero divisor.

If D is an integral domain, then

D D is a non-zero unital ring → D[x] is a non-zero unital ring.

D D is commutative → D[x] is commutative

D D does NOT have a zero-divisor → D[x] does not have a zero-divisor.

Justify (1) and (2); (3) has been proved in the first part

of this argument.

Lemma Suppose D is an integral domain. Then U(D[x])=UD).

Pf. Suppose $f \in U(D[x])$. Then $\exists g(x) \in D[x] s.t. forg m=1$.

Units of a ring of polynomials

Thursday, August 17, 2017 11:50 PM

Since D has no zero-divisors, we have

Notice that, since fg + 0, f and g are NOT zero. So

deg f, deg g z o.

 $\deg f + \deg g = 0 \implies \deg f = \deg g = 0 ; so$ $\deg f, \deg g \ge 0$

∃ a, b, ∈ D\ {o} s.t. fon= a, and gon= b.

Hence a, b = 1, which implies a, & U(D). Therefore

f∈U(D); which implies U(D[x]) ⊆U(D).

Since D and DIXT have the same (multiplicative) identity,

it is clear that U(D) = U(D[x]). Therefore by (1), (11)

one gets the claim.

 $\underline{E_{X}}$ $U(\mathbb{Z}[X]) = \S -1, 1\S$; $U(\mathbb{Q}[X]) = \mathbb{Q} \setminus \S \cdot \S$

Ex. For a general ring R, U(R[X]) might be much larger than

U(R): show that $1+2x \in U(\mathbb{Z}_{4}[x])$.

Solution $(1+2x)(1-2x) = 1-2^2x^2 = 1 = (1-2x)(1+2x)$.

Polynomials vs functions

Friday, August 18, 2017 12:00 AM

A closer look at the previous example shows that the key property

is the fact that 2=0 in \mathbb{Z}_4 ; we say 2 is a nilpotent

element: In a ring R, an element a ER is called nilpotent if

 $\exists m \in \mathbb{Z}^+$ st. $\alpha^m = 0$.

It is a good exercise to show that in a unital commutative ring

R, we have

 $a_{s}+a_{t}x+\cdots+a_{n}x^{n}\in U(R[x]) \iff a_{s}\in U(R) \text{ and } a_{t},...,a_{n} \text{ are nilpotent}$

Prior to this course, you have viewed a polynomial $f \in R[x]$ as a function from R to R. But there is a subtle difference between them. For instance there are only 4 functions from \mathbb{Z}_2 to \mathbb{Z}_2 , but there are infinitely may polynomials in $\mathbb{Z}_2[x]$: $\deg(x^n) = n$ and so $x, x^2, x^3, ...$ are distinct polynomials $(\sum a_i x^i = \sum b_i x^i \iff \forall i, a_i = b_i)$. They are however, equal as functions: $\frac{x}{i} + \frac{x^m}{i}$

Fermat's theorem

Friday, August 18, 2017 12:16 AM

In fact we have:

Theorem for any prime p and $a \in \mathbb{Z}_p$, we have a = a.

Pt. If a=0, then $a^2=0$; and there is nothing to prove.

If a to, then a e {1,..., p-1}. Since p is prime,

gcd (a, p)=1. Hence a = U(Zp). Therefore

 $l_a: \mathbb{Z}_p \to \mathbb{Z}_p$, $l_a(b) = ab$ is a bijection.

Hence $\{1, 2, ..., p-1\} = \{(1)(a), (2)(a), ..., (p-1)(a)\}$

 $\Rightarrow (p-1)! = (p-1)! \alpha^{p-1} \text{ in } \mathbb{Z}_p.$

Since 1,2,..., p-1 ∈ U(Zp), (p-1)! ∈ U(Zp). So we

can cancel it out; and get $1=a^{P-1}$. Hence a=a.

So as two functions on \mathbb{Z}_p we have x = x but as

two polynomials we have $x \neq x$.

Being aware of this issue, we still want to view a polyn.

as a function and evaluate it at a given point ae R.

The evaluation map

Friday, August 18, 2017 12:25 AM

$$\phi_{\alpha}(f(m)) = f(\alpha)$$
.

It is called the evaluation at a; and we will study it in

the next lecture.