Ring of polynomials: degree

In the previous lecture we defined the ring of polynomials with coefficients in a ring R with an indeterminate x.
For $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[x]$, we say

$$
\operatorname{deg} f=\max \left\{n \in \mathbb{Z}^{+} \cup\{-\infty\} \mid a_{n} \neq 0\right\} .
$$

So, degree of the zero polynomial is defined to be $-\infty$; and $\operatorname{deg}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=n$ if $a_{n} \neq 0$.

Ex. $\operatorname{deg}(1)=0$ in any (non-zero) unital ring.
Ex. Find $\operatorname{deg}\left(\left(2 x^{2}-1\right)(2 x+1)\right)$ in $\mathbb{Z}_{4}[x]$.
Solution . $\left(2 x^{2}-1\right)(2 x+1)=2^{2} x^{3}+2 x^{2}-2 x-1$

$$
=2 x^{2}-2 x-1
$$

So $\operatorname{deg}\left(\left(2 x^{2}-1\right)(2 x+1)\right)=2$.
Notice that in the above example

$$
\begin{aligned}
& \operatorname{deg}\left(2 x^{2}-1\right)=2, \operatorname{deg}(2 x+1)=1, \text { and } \\
& \operatorname{deg}\left(\left(2 x^{2}-1\right)(2 x+1)\right)=2 \neq 2+1=\operatorname{deg}\left(2 x^{2}-1\right)+\operatorname{deg}(2 x+1)
\end{aligned}
$$

So, for a general ring R, in $R[x]$ we do NOT have

$$
\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g
$$

A closer look at the previous example shows us why this equality fails; it fails because of the zero divisors.
Lemma. Suppose R is a ring with no zero divisors. Then for any $f, g \in R[x]$, we have

$$
\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g
$$

Proof. If either f or g is zero, then $f g=0$.
So the LHS $=-\infty$ and the $R H S=-\infty+\cdots=-\infty$
(as a convention: $-\infty+n=-\infty$ and $(-\infty)+(-\infty)=-\infty$.)
Suppose f and g are not zero; and

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, \quad a_{n} \neq 0 \\
& g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}, b_{m} \neq 0
\end{aligned}
$$

Then $f(x) g(x)=a_{n} b_{m} x^{n+m}+$ (terms of degree $\left.<n+m\right)$.
Since $a_{n}, b_{m} \neq 0$ and R has no zero divisor $a_{n} b_{m} \neq 0$. Hence $\operatorname{deg} f g=n+m=\operatorname{deg} f+\operatorname{deg} g$.

Corollary. If R has no zero divisors, then $R[x]$ does not

Units of a ring of polynomials
Thursday, August 17, 2017 11:38 PM
has no zero divisors. If D is an integral domain, then $D[x]$ is an integral domain.
Proof. If $f g=0$, then $\operatorname{deg} f g=-\infty$. Since R has no zere divisors, by Lemma, $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$.
Since two integers cannot add up to $-\infty$, either $\operatorname{deg} f=-\infty$ or $\operatorname{deg} g=-\infty$; which implies either $f=0$ or $g=0$. Hence $R[x]$ does Not have a zero divisor.

If D is an integral domain, then
(1) D is a non-zero unital ring $\xi D[x]$ is a non-zero unital
(2) (D) is commutative ring.
(3) D does NoT have a zero-divisor $\Rightarrow D I x]$ does not have a zero-dinisor.
Justify (1) and (2); (3) has been proved in the first part of this argument.
Lemma Suppose D is an integral domain. Then $U(D[x])=U(D)$.
Pf. Suppose $f \in U(D[x])$. Then $\exists g(x) \in D I x]$ st. $f(x) g(x)=1$.

Units of a ring of polynomials

Since D has no zero-divisors, we have

$$
0=\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g \text {. }
$$

Notice that, since $f g \neq 0, f$ and g are NOT zero. So $\operatorname{deg} f, \operatorname{deg} g \geq 0$.

$$
\left.\begin{array}{l}
\operatorname{deg} f+\operatorname{deg} g=0 \\
\operatorname{deg} f, \operatorname{deg} g \geq 0
\end{array}\right\} \Rightarrow \operatorname{deg} f=\operatorname{deg} g=0 \text {; so }
$$

$\exists a_{0}, b_{0} \in D \backslash\{0\}$ s.t. $f(x)=a_{0}$ and $g(x)=b_{0}$.
Hence $a_{0} b_{0}=1$, which implies $a_{0} \in U(D)$. Therefore $f \in U(D)$; which implies $U(D[x]) \subseteq U(D)$.

Since D and $D[x]$ have the same (multiplicative) identity, it is clear that $U(D) \subseteq U(D[x])$. Therefore by (I), (II) one gets the claim.

Ex. $U(\mathbb{Z}[x])=\{-1,1\} ; \quad U(Q[x])=Q \backslash\{\circ\}$.
Ex. For a general ring $R, U(R[x])$ might be much larger than
$U(R)$: show that $1+2 x \in U\left(\mathbb{Z}_{4}[x]\right)$.
Solution $(1+2 x)(1-2 x)=1-2^{2} x^{2}=1=(1-2 x)(1+2 x)$.

Polynomials vs functions
Friday, August 18, 2017 12:00 AM
A closer look at the previous example shows that the key property is the fact that $2^{2}=0$ in \mathbb{Z}_{4}; we say 2 is a nilpotent element: In a ring R, an element $a \in R$ is called nilpotent if $\exists m \in \mathbb{Z}^{+}$st. $a^{m}=0$.

It is a good exercise to show that in a unital commutative ring R, we have

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in U(R[x]) \Longleftrightarrow a_{0} \in U(R) \text { and } a_{1}, \ldots, a_{n} \text { are }
$$ nilpotent.

Prior to this course, you have viewed a polynomial $f \in R[x]$ as a function from R to R. But there is a subtle difference between them. For instance there are only 4 functions from \mathbb{Z}_{2} to \mathbb{Z}_{2}, but there are infinitely may polynomials in $\mathbb{Z}_{2}[x]: \quad \operatorname{deg}\left(x^{n}\right)=n$ and so x, x^{2}, x^{3}, \ldots are distinct polynomials $\left(\sum a_{i} x^{i}=\sum b_{i} x^{i} \Leftrightarrow \forall i, a_{i}=b_{i}.\right)$. They are however, equal as functions: \quad| x | x^{m} |
| :--- | :--- |
| 0 | 0 |
| 1 | 1 |.

Fermat's theorem

In fact we have:
Theorem. For any prime p and $a \in \mathbb{Z}_{p}$, we have

$$
a^{P}=a .
$$

Pf. If $a=0$, then $a^{p}=0$; and there is nothing to prove. If $a \neq 0$, then $a \in\{1, \cdots, p-1\}$. Since p is prime, $\operatorname{gcd}(a, p)=1$. Hence $a \in U\left(\mathbb{Z}_{p}\right)$. Therefore

$$
l_{a}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \quad l_{a}(b)=a b \text { is a bijection. }
$$

Hence $\{1,2, \ldots, p-1\}=\{(1)(a),(2)(a), \ldots,(p-1)(a)\}$

$$
\Rightarrow(p-1)!=(p-1)!a^{p-1} \text { in } \mathbb{Z}_{p}
$$

Since $1,2, \ldots, p-1 \in U\left(\mathbb{Z}_{p}\right), \quad(p-1)!\in U\left(\mathbb{Z}_{p}\right)$. So we can cancel it out; and get $1=a^{p-1}$. Hence $a^{p}=a$. So as two functions on \mathbb{Z}_{P} we have $x^{p}=x$ but as two polynomials we have $x^{p} \neq x$.

Being aware of this issue, we still want to view a polyn. as a function and evaluate it at a given point $a \in R$.

The evaluation map

For $a \in R$, let $\phi_{a}: R[x] \rightarrow R$ be

$$
\phi_{a}(f(x))=f(a) .
$$

It is called the evaluation at a; and we will study it in the next lecture.

