$Q(D)$ is a field
Wednesday, August 9, 2017
Unity. $[(1,1)] \cdot[(a, b)]=[(1 \cdot a, 1 . b)]=[(a, b)]$.
Theorem. (a) Q(D) is a field.
(b) $i: D \rightarrow Q(D), i(a)=I(a, 1)]$ is an infective ring homomorphism.
(c) If F is a field and $g: D \rightarrow F$ is an injective ring homomorphism, then there is an injective ring homomorphism

$$
\tilde{g}: Q(D) \rightarrow F
$$

such that $\tilde{g}(i(a))=g(a)$ for any $a \in D$; and such \tilde{g} is unique.

Pf. (a) We have already proved that $Q(D)$ is a unital comm.
ring. So it is enough to show any non-zero element in Q(D) is invertible.

$$
\begin{aligned}
& {[(a, b)] \neq[(0,1)] } \Rightarrow a \cdot 1 \neq b \cdot 0 \Rightarrow a \neq 0 \\
& \Rightarrow[(b, a)] \in Q(D) \\
& {[(a, b)] \cdot[(b, a)]=[(a b, b a)] \overline{\overline{4}}[(1,1)]=1_{Q C D} } \\
&\{a b \cdot 1=b a \cdot 1
\end{aligned}
$$

Main properties of $Q(D)$
Wednesday, August 9, 2017 2:20 PM
(b)

$$
\begin{aligned}
& i(a+b) \stackrel{?}{=} i(a)+i(b) \Longleftrightarrow[(a+b, 1)] \stackrel{?}{=}[\underbrace{[(\underbrace{1+1 \cdot b}_{a+b}, \underbrace{1 \times 1}_{1})]}_{[(a, 1)]+[(b, 1)]} \\
& i(a \cdot b) \stackrel{?}{=} i(a) \cdot i(b) \Longleftrightarrow[(a b, 1)]=[(a, 1)] \cdot[(b, 1)] \\
& a \in \text { er } i \Longleftrightarrow i(a)=[(0,1)] \\
& \Leftrightarrow[(a, 1)]=[(0,1)] \\
& \Longleftrightarrow a \times 1=1 \times 0 \quad \Leftrightarrow a=0 .
\end{aligned}
$$

So i is injective.
(C) Since $g: D \rightarrow F$ is infective, $\forall a \in D \backslash\{0\}, g(a) \neq 0$.

So $g(a)^{-1}$ exists in F (as F is a field.)
Let $\tilde{g}: Q(D) \rightarrow F, \tilde{g}([(a, b)])=g(a) g(b)^{-1}$.
(Notice that, since $b \neq 0$, by the above argument $g(b)^{-1}$ exists.)
Claim. \tilde{g} is well-defined.
Pf. We have to show $\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right]$ implies

$$
\begin{aligned}
& g\left(a_{1}\right) g\left(b_{1}\right)^{-1}=g\left(a_{2}\right) g\left(b_{2}\right)^{-1} . \\
& {\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right] \Rightarrow a_{1} b_{2}=a_{2} b_{1}}
\end{aligned} \begin{aligned}
& \Rightarrow g\left(a_{1}\right) g\left(b_{2}\right)=g\left(a_{2}\right) g\left(b_{1}\right) \\
& \Rightarrow g\left(a_{1}\right) g\left(b_{1}\right)^{-1}=g\left(a_{2}\right) g\left(b_{2}\right)^{-1} .
\end{aligned}
$$

Claim. \tilde{g} is a ring homomorphism.

$$
\text { Pf. } \begin{aligned}
& \tilde{g}\left(\left[\left(a_{1}, b_{1}\right)\right]+\left[\left(a_{2}, b_{2}\right)\right]\right)=\tilde{g}\left(\left[\left(a_{1} b_{2}+b_{1} a_{2}, b_{1} b_{2}\right)\right]\right. \\
&= g\left(a_{1} b_{2}+b_{1} a_{2}\right) g\left(b_{1} b_{2}\right)^{-1}=\left(g\left(a_{1}\right) g\left(b_{2}\right)+g\left(b_{1}\right) g\left(a_{2}\right)\right) g\left(b_{2}\right)^{-1} g\left(b_{1}\right)^{-1} \\
&= g\left(a_{1}\right) g\left(b_{1}\right)^{-1}+g\left(a_{2}\right) g\left(b_{2}\right)^{-1} \\
&=\tilde{g}\left(\left[\left(a_{1}, b_{1}\right)\right]\right)+\tilde{g}\left(\left[\left(a_{2}, b_{2}\right)\right]\right) . \\
& \begin{aligned}
\tilde{g}\left(\left[\left(a_{1}, b_{1}\right)\right] \cdot\left[\left(a_{2}, b_{2}\right)\right]\right) & =\tilde{g}\left(\left[\left(a_{1} a_{2}, b_{1} b_{2}\right)\right]\right) \\
& =g\left(a_{1} a_{2}\right) g\left(b_{1} b_{2}\right)^{-1} \\
& =g\left(a_{1}\right) g\left(a_{2}\right) g\left(b_{2}\right)^{-1} g\left(b_{1}\right)^{-1} \\
& =\left(g\left(a_{1}\right) g\left(b_{1}\right)^{-1}\right)\left(g\left(a_{2}\right) g\left(b_{2}\right)^{-1}\right) \\
& \left.=\tilde{g}\left(I\left(a_{1}, b_{1}\right)\right]\right) \tilde{g}\left(\left[\left(a_{2}, b_{2}\right)\right]\right) .
\end{aligned}
\end{aligned}
$$

Claim. \tilde{g} is infective
If $\begin{aligned} \tilde{g}([(a, b)])=0 & \Rightarrow g(a) g(b)^{-1}=0 \\ & \Rightarrow g(a)=0\end{aligned}$

$$
\Rightarrow g(a)=0
$$

$\Rightarrow a=0$ as g is infective

$$
\Rightarrow \quad[(a, b)]=[(0, b)]=[(0,1)]
$$

Claim. $\tilde{g}(i(a))=g(a)$.
Pf. $\tilde{g}(i(a))=\tilde{g}([(a, 1)])=g(a) g(1)^{-1}$. So it is enough to show $g(1)=1$. Notice that $g(1)^{2}=g(1.1)=g(1)$.

So $g(1)^{2}=g(1)$. Since $1 \neq 0, g(1) \neq 0$. So $g(1)^{-1}$ exists.
So $g(1)=1$.
Claim. There is a unique ring homomorphism $\tilde{g}: Q(D) \rightarrow F$ such that $\tilde{g}(i(a))=g(a)$ for any $a \in D$.
Pf. Suppose $h: Q(D) \rightarrow F$ is a such homomorphism.
Then $h([(1, a)][(a, 1)])=h([(a, a)])=h([(1,1)])$

$$
\begin{gathered}
h([(1, a)]) h(i(a)) \\
h([(1, a)]) g(a) \\
\Rightarrow h([(1, a)])=g(a)^{-1} .
\end{gathered}
$$

$$
h(i(1))
$$

$$
g(1)=1
$$

Hence $\quad h([(a, b)])=h(I(a, 1)][(1, b)])$

$$
\begin{aligned}
& =h(I(a, 1)]) h([(1, b)]) \\
& =g(a) g(b)^{-1}=\tilde{g}([(a, b)]),
\end{aligned}
$$

which shows that $h=\tilde{g}$.
So informally Q(D) is "the smallest field" which contains a "copy of D ".

Examples
Wednesday, August 9, 2017
Ex. $Q(\mathbb{Z}) \simeq \mathbb{Q}$.
Pf. Since $\mathbb{Z} c \mathbb{Q}$, by Theorem $\exists \tilde{g}: Q(\mathbb{Z}) \rightarrow \mathbb{Q}$,

$$
x \longmapsto x
$$

$\tilde{g}([(a, b)])=g(a) g(b)^{-1}=\frac{a}{b}$, and \tilde{g} is infective. Clearly \tilde{g} is surjective. So \tilde{g} is an isomorphism.

Ex. If F is a field, then $Q(F) \simeq F$.
Pf. Let $g: F \rightarrow F, g(x)=x$. By Theorem \exists an infective ring homomorphism $\tilde{g}: Q(F) \rightarrow F$ such that
$\tilde{g}([(a, 1)])=g(a)=a$. So \tilde{g} is surjective as well.
Hence $\tilde{g}: Q(F) \rightarrow F$ is an isomorphism.
Ex. Prove that $Q(\mathbb{Z}[\sqrt{2}]) \simeq \mathbb{Q}[\sqrt{2}]$ where

$$
\begin{aligned}
& \mathbb{Z}[\sqrt{2}]=\{a+\sqrt{2} b \mid a, b \in \mathbb{Z}\} \text { and } \\
& \mathbb{Q}[\sqrt{2}]=\{a+\sqrt{2} b \mid a, b \in \mathbb{Q}\} .
\end{aligned}
$$

Pf. Claim 1. $\mathbb{Q}[\sqrt{2}]$ is a subring of \mathbb{R}; that means $(2[\sqrt{2}],+, \cdot)$ is a ring where +1 are the operations in \mathbb{R}.

If of claim 1. For $a+\sqrt{2} \dot{b}, c+\sqrt{2} d \in Q[\sqrt{2}]$,

$$
(a+\sqrt{2} b)-(c+\sqrt{2} d)=(\underbrace{(a-c)}_{\text {Since in } Q}+\sqrt{2}(\underbrace{(b-d)}_{\text {in }} \in \mathbb{\jmath} \in \mathbb{\jmath}
$$

So $(\mathbb{Q}[\sqrt{2}],+)$ is a subgroup of $(\mathbb{R},+)$.

$$
(a+\sqrt{2} b)(c+\sqrt{2} d)=(\underbrace{a c+2 b d)}_{\text {in } \mathbb{Q}}+\sqrt{2}(\underbrace{(a d+b c)}_{\text {in } \mathbb{Q}} \in \mathbb{Q} \mathbb{Q}[\sqrt{2}]
$$

So $\mathbb{Q}[\sqrt{2}]$ is closed under multiplication. Hence $((\mathbb{Q}[\sqrt{2}],+, \cdot)$ is a subring of $(\mathbb{R},+, \cdot)$. (Notice that we do not need to check the associativity of. and the distribution law as they can be deduced from the fact that $(\mathbb{R},+, \cdot)$ is a ring.)

Claim 2. $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R}.
Pf of claim 2. By claim 1, we get that $Q[\sqrt{2}]$ is a unital commutative ring. So it is enough to show

$$
\begin{aligned}
& U(\mathbb{Q}[\sqrt{2}])=\mathbb{Q}[\sqrt{2}] \backslash\{0\} . \begin{aligned}
\left.\begin{array}{c}
\text { Warning: we have to show } \\
a-\sqrt{2} b \neq 0
\end{array}\right\}
\end{aligned} \\
& \begin{aligned}
a+\sqrt{2} b \neq 0 \Rightarrow \frac{1}{a+\sqrt{2} b} & =\frac{a-\sqrt{2} b}{(a+\sqrt{2} b)(a-\sqrt{2} b)}=\frac{a-\sqrt{2} b}{a^{2}-2 b^{2}} \\
& =\underbrace{}_{\underbrace{\left(\frac{a}{a^{2}-2 b^{2}}\right)}_{\text {in } Q}-\sqrt{2}(\underbrace{\left(\frac{b}{a^{2}-2 b^{2}}\right.}_{\text {in } Q}) \in \mathbb{Q}] \sqrt{2}] .}
\end{aligned} .
\end{aligned}
$$

So as soon as we show:

$$
\left.\begin{array}{l}
a+\sqrt{2} b \neq 0 \\
a, b \in \mathbb{Q}
\end{array}\right\} \Rightarrow a-\sqrt{2} b \neq 0
$$ we get the $2^{\text {nd }}$ claim.

First we deduce \otimes from irrationality of $\sqrt{2}$, and then we recall two proofs of irrationality of $\sqrt{2}$.
suppose to the contrary that does not hold. So $\exists a, b \in \mathbb{Q}$ s.t. $a+\sqrt{2} b \neq 0$ and $a-\sqrt{2} b=0$.

If $b \neq 0$, then $\sqrt{2}=a / b \in Q$ which is a contradiction. So $b=0$. Hence $a=(\sqrt{2})(0)=0$; this implies $a+\sqrt{2} b=0$, which is a contradiction.

- $\sqrt{2}$ is irrational.

Pf (Method 1: using the unique factorization into a product of primes) Suppose to the contrary that $\sqrt{2}=\frac{m}{n}$ for $m, n \in \mathbb{Z}^{+}$. Then $2 n^{2}=m^{2}$. Suppose $n=2^{k} n^{\prime}$ and $m=2^{l} m^{\prime}$ where $k, l \in \mathbb{Z}^{\geq 0}$ and m^{\prime}, n^{\prime} are odd. $\Rightarrow 2 n^{2}-2^{2 k+1} \underbrace{n^{\prime 2}}_{\text {odd }}=2^{2 l} \underbrace{m^{\prime 2}}_{\text {odd }}$. By the uniqueness of factor.
into primes, the power of 2 on both sides should be the same. So $2 k+1=2 l$, which is not possible as the left hand side is odd and the right hand side is even.
(Method 2. Only using the Well-ordering principle.)
Suppose to the contrary that there are positive integers m and n such that $\sqrt{2}=\frac{m}{n}$. And so $2 n^{2}=m^{2}$. By the well-ordering principle, there is such a pair with smallest possible value of $m+n$.

Since $2 / \mathrm{m}^{2}, m$ is even. So $m=2 r$ for some $r \in \mathbb{Z}^{+}$. Hence $n^{2}=2 r^{2}$. Notice that $r+n<n+m$ and $2 r^{2}=n^{2}$ which contradicts our assumption that $n+m$ is the minimum of $\left\{x+y \mid x, y \in \mathbb{Z}^{+}, \quad 2 x^{2}=y^{2}\right\}$. Claim 3. $Q(\mathbb{Z}[\sqrt{2}]) \simeq Q[\sqrt{2}]$.

Pf. Let $g: \mathbb{Z}[\sqrt{2}] \longrightarrow Q[\sqrt{2}], \quad g(a+b \sqrt{2})=a+b \sqrt{2}$.
Since g is an embedding and $Q[\sqrt{2}]$ is a field,

Field of fractions of $\mathrm{Z}[$ sqrt(2)]
Wednesday, August 16, 2017 1:53 AM
the function $\tilde{g}: Q(\mathbb{Z}[\sqrt{2}]) \rightarrow \mathbb{Q}[\sqrt{2}]$,

$$
\begin{aligned}
\tilde{g}([(a+b \sqrt{2}, c+d \sqrt{2})]) & =g(a+b \sqrt{2}) g(c+d \sqrt{2})^{-1} \\
& =\frac{a+b \sqrt{2}}{c+d \sqrt{2}}
\end{aligned}
$$

is an infective ring homomorphism. So to get an isomorphism it is enough to show \tilde{g} is surjective.
$\forall x+\sqrt{2} y \in \mathbb{Q}[\sqrt{2}]$, after taking a common denominator c of x and y, we can find $a, b \in \mathbb{Z}$ s.t. $x=\frac{a}{c}$ and $y=\frac{b}{c}$. Thus $x+\sqrt{2} y=\frac{a}{c}+\sqrt{2} \frac{b}{c}=\frac{a+\sqrt{2} b}{c}$.

$$
\begin{aligned}
& =g(a+\sqrt{2} b) g(c)^{-1} \\
& =\tilde{g}([(a+\sqrt{2} b, c)])
\end{aligned}
$$

You have seen and worked with real or complex polynomials in a given variable x. We can and will consider polynomials with coefficients in a given ring in an indeterminant x :

$$
R[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid n \in \mathbb{Z}^{0}, a_{i} \in R\right\} .
$$

We sometimes corite $\sum_{i=0}^{n} a_{i} x^{i}$ instead of $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$.
Or $\sum_{i=0}^{\infty} a_{i} x^{i}$ with an understanding that $a_{n+1}=a_{n+2}=\cdots=0$ for some $n \in \mathbb{Z}^{Z^{\circ}}$.
$R[x]$ with the usual + and. is a ring. Here is the formal definition:

$$
\begin{gathered}
\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty} b_{i} x^{i}=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i} \text {, and } \\
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} b_{n-i}\right) x^{n} .
\end{gathered}
$$

Ex. Find $(x+1)^{5}$ in $\mathbb{Z}_{4}[x]$.
Solution $(x+1)^{2}=x^{2}+2 x+1$.

$$
\begin{aligned}
(x+1)^{4}=\left(x^{2}+2 x+1\right)^{2}=x^{4} & +2 x^{3}+x^{2} \\
& +2 x^{3}+0+2 x \\
= & x^{4}+2 x^{2}+1 \Rightarrow(x+1)^{5}=x^{5}+x^{4}+2 x^{3}+2 x^{2}+x+1
\end{aligned}
$$

