As we saw in the previous lecture, in a ring we do not necessarily have the cancellation law.
Def. Let R be a ring. A non-zero element a of R is called a zero divisor if $\exists b \in R \backslash\{0\}$ such that either $a b=0$ or $b a=0$.

Lemma. The cancellation laws hold in R if and only if R does NOT have a zero divisor.

Pf. $(\Leftrightarrow) a b=0=a \cdot 0 \Rightarrow b=0$
by the cancellation law

$$
\left.\begin{array}{rl}
a b=0=0 . b \stackrel{y}{\Rightarrow} a=0 \\
\Leftrightarrow a x_{1}=a x_{2} \Rightarrow & 0=a\left(x_{1}-x_{2}\right) \\
& a \neq 0 \\
& \text { no zero divisor }
\end{array}\right\} \Rightarrow \begin{aligned}
& \Rightarrow x_{1}-x_{2}=0 \\
& \Rightarrow x_{1}=x_{2} .
\end{aligned}
$$

Def. A commutative unital ring D, with $1 \neq 0$ and n_{0} zero divisor is called an integral domain.

Finite integral domains
Monday, August 7, 2017 11:25 PM
Ex. If F is a field, then F is an integral domain.
Pf. $a b=0$

$$
\left.\begin{array}{l}
a b=0 \\
a \neq 0 \Rightarrow \exists a^{-1} \in F
\end{array}\right\} \Rightarrow a^{-1}(a b)=a^{-1} 0=0
$$

So F has no zero-divisor.
Since F is a field, it is a commutative unital ring and $1 \neq 0$.

Ex. \mathbb{Z} is an integral domain; and it is not a field.
Proposition. Suppose D is a finite integral domain. Then D is a field.
Pf. For $a \in D \backslash\{0\}$, let $l_{a}: D \rightarrow D$ be

$$
l_{a}(x)=a x
$$

Since D has the cancellation law, l_{a} is one-tomone. Since D is finite, l_{a} is a bijection. So $\exists a^{\prime} \in D$ such that $l_{a}\left(a^{\prime}\right)=1 \quad\left(D\right.$ is unital.). So $a a^{\prime}=1$. Since D commutative, $a a^{\prime}=a^{\prime} a=1$. Thus $a \in \mathrm{U}(D)$. Therefore D is a field (as D is a unital commutative ring and $U(D)=D \backslash\{0\}$.

Ex. \mathbb{Z}_{n} is an integral domain if and only if n is prime.
Pf. Suppose to the contrary that n is composite and
\mathbb{Z}_{n} is an integral domain. Then
$n=a b$ for some $1<a, b<n$. So
$a \sigma_{n} b=0$ as the remainder of $a b=n$ divided by n is or which implies \mathbb{Z}_{n} has a zero divisor. And that gives us a contradiction.

$$
\begin{aligned}
U\left(\mathbb{Z}_{p}\right) & =\left\{a \in \mathbb{Z}_{p} \mid \operatorname{gcd}(a, p)=1\right\} \\
& =\{1,2, \cdots, p-1\}=\mathbb{Z}_{p} \backslash\{0\}
\end{aligned}
$$

So \mathbb{I}_{p} is a field, and therefore it is an integral domain.

Corollary. If D is an integral domain, then char (D) is ether 0 or prime. (why?)

The field of fractions of an integral domain
We have seen that any field is an integral domain, but the converse is not true in general. But we will see that any integral domain can be embedded into a field; think about \mathbb{Z} and \mathbb{Q}.

Starting with an integral domain D, we would like to construct its field of fractions (also known as field of quotients). So elements of the field $Q(D)$ of fractions of D are informally of the form numerator / denom. and the denomi. cannot be zero. But a / b should be equal to $a r / b r$. So we start with $D \times(D \backslash\{0\})$ and then partition it in a way that, if $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ are in the same subset, then " $a_{1} / b_{1}=a_{2} / b_{2}$ ". But what do we expect from $a_{1 / b_{1}}=a_{2} / b_{2}$? This should imply $a_{1} b_{2}=a_{2} b_{1}$ (remember that D is a commutative ring.) So for any $(a, b) \in D \times(D \backslash\{0\})$, let

$$
[(a, b)]:=\left\{\left(a^{\prime}, b^{\prime}\right) \in D \times(D \backslash\{0\}) \mid a b^{\prime}=a^{\prime} b\right\} .
$$

The field of fractions

Lemma. $\left\{[(a, b)] \mid(a, b) \in D_{x}(D \backslash\{0\})\right\}$ is a partition of $D \times(D \backslash \xi \sigma \xi)$.

I Before we get to the proof, let's try to visualize these sets for $D=\mathbb{Z}$.

So we have to remove the y-axis

$$
\begin{aligned}
& {[(2,1)] } \\
= & \left\{(x, y) \left\lvert\, x=\frac{2}{1} y\right.\right\} \\
& {[(3,5)] } \\
= & \left\{(x, y) \left\lvert\, x=\frac{3}{5} y\right.\right\}
\end{aligned}
$$

and consider the lines which pass through the origin (excluding the origin.). It is clear that we are getting a partition.]
PP.. For any $(a, b) \in D \times(D \backslash\{o\})$, we have $a b=a b$ so $(a, b) \in[(a, b)]$. And so the union of these sets $[(a, b)]$ cover $D_{x}(D \backslash\{0\})$.

- Next we have to show,

$$
\left[\left(a_{1}, b_{1}\right] \cap\left[\left(a_{2}, b_{2}\right)\right] \neq \varnothing \Rightarrow\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right] .\right.
$$

Suppose $(c, d) \in\left[\left(a_{1}, b_{1}\right)\right] \cap\left[\left(a_{2}, b_{2}\right)\right]$. Then

$$
c b_{1}=d a_{1} \text { and } c b_{2}=d a_{2}
$$

Partitioning $\operatorname{DxD\backslash \{ 0\} }$
Wednesday, August 9, 2017 1:04 PM
So $\left.\quad c b_{1} b_{2}=\left(c b_{1}\right) b_{2}=d a_{1} b_{2}\right\} \Rightarrow$ by the cancellation law,

$$
\begin{array}{ll}
c b_{2}^{\prime \prime} b_{1}=\left(c b_{2}\right) b_{1}=d a_{2} b_{1} \quad & a_{1} b_{2}=a_{2} b_{1}, \text { as } \\
& d \neq 0
\end{array}
$$

Suppose $\left(a^{\prime}, b^{\prime}\right) \in\left[\left(a_{1}, b_{1}\right)\right]$. Then $a^{\prime} b_{1}=b^{\prime} a_{1}$. $\left.a^{\prime} b_{1} b_{2}=b^{\prime} a_{1} b_{2}=b^{\prime} a_{2} b_{1}\right\} \Longrightarrow$ by the cancellation law $b_{1} \neq 0$

$$
\begin{gathered}
a^{\prime} b_{2}=b^{\prime} a_{2} \\
\Rightarrow \quad\left(a^{\prime}, b^{\prime}\right) \in\left[\left(a_{2}, b_{2}\right)\right] .
\end{gathered}
$$

So $\left[\left(a_{1}, b_{1}\right)\right] \subseteq\left[\left(a_{2}, b_{2}\right)\right]$. Similarly we have

$$
\left[\left(a_{2}, b_{2}\right)\right] \subseteq\left[\left(a_{1}, b_{1}\right)\right]
$$

And so $\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right]$.
A close look at the above proof shows that
Lemma $\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right]$ if and only if $a_{1} b_{2}=b_{1} a_{2}$
(Exercise) (Hint \Leftrightarrow) is easier:

$$
\begin{gathered}
\left.\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right]\right\} \Rightarrow\left(a_{1}, b_{1}\right) \in\left[\left(a_{2}, b_{2}\right)\right] \Rightarrow a_{1} b_{2}=b_{1} a_{2} . \\
\left(a_{1}, b_{1}\right) \in\left[\left(a_{1}, b_{1}\right)\right]
\end{gathered}
$$

Defining the operations on the defined partition Wednesday, August 9, 2017 1:18 PM
Next we will make $Q(D):=\{[(a, b)] \mid(a, b) \in D \times(D,\{0\})\}$ into a field.
Lemma. The following are cuell-defined binary operators on
$Q(D): \quad[(a, b)]+[(c, d)]=[(a d+b c, b d)]$
and $[(a, b)] \cdot[(c, d)]=\left[\left(a c, b_{d}\right)\right]$.
[The above definition is inspired by $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ and $\frac{a}{b} \frac{c}{d}=\frac{a c}{b d}$ in (b.)]
Pf. Let's try to understand what the statement claims:
If the defined t is an operation, then we should have

$$
\left[\begin{array}{l}
{\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right]} \\
{\left[\left(c_{1}, d_{1}\right)\right]=\left[\left(c_{2}, d_{2}\right)\right]}
\end{array}\right\} \Rightarrow\left[\left(a_{1}, b_{1}\right)\right]+\left[\left(c_{1}, d_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right]+\left[\left(c_{2}, d_{2}\right)\right]
$$

which means we have to show

$$
\left.\begin{array}{l}
{\left[\left(a_{1}, b_{1}\right)\right]=\left[\left(a_{2}, b_{2}\right)\right]} \\
{\left[\left(c_{1}, d_{1}\right)\right]=\left[\left(c_{2}, d_{2}\right)\right]}
\end{array}\right\} \stackrel{?}{\Rightarrow} \quad\left[\left(a_{1} d_{1}+b_{1} c_{1}, b_{1} d_{1}\right)\right]=\left[\left(a_{2} d_{2}+b_{2} c_{2}, b_{2} d_{2}\right)\right]
$$

So using the previous lemma, we have to show

$$
\left.\begin{array}{rl}
a_{1} b_{2}=b_{1} a_{2} \\
c_{1} d_{2}=d_{1} c_{2}
\end{array}\right\} \stackrel{?}{\Rightarrow}\left(a_{1} d_{1}+b_{1} c_{1}\right) b_{2} d_{2}=\left(a_{2} d_{2}+b_{2} c_{2}\right) b_{1} d_{1} . ~ \begin{aligned}
\left(a_{1} d_{1}+b_{1} c_{1}\right) b_{2} d_{2} & =a_{1} b_{2} d_{1} d_{2}+b_{1} b_{2} \underbrace{}_{1} d_{2}=b_{1} a_{2} d_{1} d_{2}+b_{1} b_{2} d_{1} c_{2} \\
& =\left(a_{2} d_{2}+b_{2} c_{2}\right) b_{1} d_{1} ; \text { as we wished. }
\end{aligned}
$$

The other part is similar. Exercise finish the proof.
Lemma. ($Q(D),+$) is an additive group.
Pf. Associativity:

$$
\begin{aligned}
& ([\underbrace{\left.\left(a_{1}, b_{1}\right)\right]+\left[\left(a_{2}, b_{2}\right)\right]})+\left[\left(a_{3}, b_{3}\right)\right] \stackrel{?}{=}\left[\left(a_{1}, b_{1}\right)\right]+(\underbrace{\left.\left.\left[a_{2}, b_{2}\right)\right]+\left[\left(a_{3}, b_{3}\right)\right]\right)} \\
& {\left[\left(a_{2} b_{3}+b_{2} a_{3}, b_{2} b_{3}\right)\right]} \\
& {\left[\left(a_{1} b_{2}+b_{1} a_{2}, b_{1} b_{2}\right)\right]} \\
& {\left[\left(\left(a_{1} b_{2}+b_{1} a_{2}\right) b_{3}+\left(b_{1} b_{2}\right) a_{3}, b_{1} b_{2} b_{3}\right)\right] \stackrel{?}{=}\left[\left(a_{1}\left(b_{2} b_{3}\right)+b_{1}\left(a_{2} b_{3}+b_{2} a_{3}\right), b_{1} b_{2} b_{3}\right]\right.} \\
& \left(a_{1} b_{2}+b_{1} a_{2}\right) b_{3}+\left(b_{1} b_{2}\right) a_{3}=a_{1} b_{2} b_{3}+a_{2} b_{1} b_{3}+a_{3} b_{1} b_{2} \\
& a_{1}\left(b_{2} b_{3}\right)+b_{1}\left(a_{2} b_{3}+b_{2} a_{3}\right)=a_{1} b_{2} b_{3}+a_{2} b_{1}^{\prime \prime} b_{3}+a_{3} b_{1} b_{2}
\end{aligned}
$$

Abelian:

$$
\underbrace{[(a, b)]+[(c, d)]}_{[(a d+b c, b d)} \stackrel{?}{[} \underbrace{[(c, d)]+[(a, b)]}
$$

And D is commutative.
Nuetral element:

$$
\begin{aligned}
{[(a, b)]+[(0,1)] } & =[(a \cdot 1+b \cdot 0, b \cdot 1)] \\
& =[(a, b)]
\end{aligned}
$$

Negative of an element:

$$
\begin{aligned}
& {[(a, b)]+[(-a, b)]=\left[\left(a b+b(-a), b^{2}\right)\right]} \\
& =\left[\left(0, b^{2}\right)\right]=[(0,1)] \\
& \\
& \left\{0 \times 1=b^{2} \times 0\right\}
\end{aligned}
$$

$Q(D)$ is a unital commutative ring Wednesday, August 9, 2017 1:50 PM
Lemma. (Q(D),,$+ \cdot$) is a unital commutative ring.
DP. We have already proved that $(Q(D),+)$ is an abelian group. Next we show . is associative.

$$
(\underbrace{\left.\left[\left(b_{1} b_{2}\right) b_{3}\right)\right]}_{\underbrace{\left[\left(\left(a_{1}, b_{1}\right)\right] \cdot\left[\left(a_{2}, b_{2}\right)\right]\right)}_{\left[\left(a_{1} a_{2}, b_{1} b_{2}\right)\right]}) \cdot\left[\left(a_{3}, b_{3}\right)\right]} \text { 㝵 }\left[\left(a_{1}, b_{1}\right)\right] \cdot \underbrace{\left(\left[\left(a_{2}, b_{2}\right)\right] \cdot\left[\left(a_{3}, b_{3}\right)\right]\right)}_{\left[\left(a_{2} a_{3}, b_{2} b_{3}\right)\right]}
$$

And we get the equality as D is a ring.
Commutative. $\underbrace{\left[\left(a_{1}, b_{1}\right)\right] \cdot\left[\left(a_{2}, b_{2}\right)\right]}_{\left[\left(a_{1} a_{2}, b_{1} b_{2}\right)\right]} \stackrel{?}{\rightleftharpoons}[\underbrace{\left[\left(a_{2}\right)\right] \cdot\left[\left(a_{1}, b_{1}\right)\right]}_{\left[\left(a_{2}, a_{1}, b_{2} b_{1}\right)\right]}$
we get the equality as D is commutative.
Distribution.

$$
\begin{aligned}
& \underbrace{\left[\left(a_{1}, b_{1}\right)\right] \cdot \underbrace{\left(\left[\left(a_{2}, b_{2}\right)\right]+\left[\left(a_{3}, b_{3}\right)\right]\right)}_{\left[\left(a_{2} b_{3}+b_{2} a_{3}, b_{2} b_{3}\right)\right]}=\underbrace{[\underbrace{\left[\left(a_{1}, b_{1}\right)\right] \cdot\left[\left(a_{3}, b_{3}\right)\right]}}_{\underbrace{\left[\left(a_{1}, b_{2}, b_{1}\right)\right] \cdot\left[\left(a_{2}, b_{2}\right)\right]}]}[\underbrace{\left[\left(a_{2}\right)\right.}_{\left[\left(a_{1}, a_{3}, b_{1} b_{3}\right)\right]}} \\
& [\underbrace{\left(a_{1}\left(a_{2} b_{3}+b_{2} a_{3}\right)\right.}_{r}, \underbrace{b_{1}\left(b_{2} b_{3}\right)}_{s})] \underbrace{b_{1} a_{1}\left(a_{2} b_{3}+b_{2} a_{3}\right)}_{b_{1} r} \underbrace{\left(\left(a_{1} a_{2}\right)\left(b_{1} b_{3}\right)+\left(b_{1} b_{2}\right)\left(a_{1} a_{3}\right)\right.}_{b_{1} s}, \underbrace{b_{1}}_{\underbrace{b_{1} b_{2} b_{2}}_{1} b_{3})\left(b_{1} b_{3}\right)}]
\end{aligned}
$$

Since $\quad r(b, s)=s(b, r)$, we have $[(r, s)]=[(b, r, b, s)]$ which proves the equality.

