Basic computations in a ring

Monday, August 7, 2017

3:29 PM

Lemma. Let R be a ring. For any a, be R, we have

$$\bigcirc \quad \circ \cdot \circ = \circ \cdot \circ = \circ$$

(2)
$$(-a) \cdot b = -ab = a \cdot (-b)$$

$$(-a) \cdot (-b) = a \cdot b .$$

In the abelian group (R,+) we have cancellation. So $0 = 0 \cdot a$.

a.0=a.(0+0)=a.0+a.0. So again using the cancellation property we have a.0=0.

(2)
$$a \cdot b + (-a) \cdot b = (a + (-a)) \cdot b = 0 \cdot b = 0$$

So
$$(-a) \cdot b = -a \cdot b$$

$$a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 = 0$$

$$S_0 = a \cdot (-b) = -a \cdot b$$

In group theory, you have learned that in an additive group (R,+)

for any $a \in \mathbb{R}$, the subgroup generated by a is $\{n \in \mathbb{Z}\}$

Characteristic of a unital ring.

Monday, August 7, 2017 3

Lemma. Suppose R is a unital ring. Then $c: \mathbb{Z} \to \mathbb{R}$,

 $C(n) = n \cdot I_R$ is a ring homomorphism.

Proof. In group theory, you have seen that c is an abelian

group homomorphism $(\mathbb{Z},+) \longrightarrow (\mathbb{R},+)$.

 $\forall m, n \in \mathbb{Z}^+, c(m) c(n) = \left(\frac{1}{R} + \dots + \frac{1}{R}\right) \left(\frac{1}{R} + \dots + \frac{1}{R}\right)$

 $= \frac{1}{R} \times \frac{1}{R} + \cdots + \frac{1}{R} \times \frac{1}{R} = \frac{1}{R} + \cdots + \frac{1}{R} \times \frac$

= C(mn) ·

 $C(-m) C(n) = \underbrace{\left(\left(-\frac{1}{R}\right) + \dots + \left(-\frac{1}{R}\right)\right)}_{m} \underbrace{\left(\frac{1}{R} + \dots + \frac{1}{R}\right)}_{n}$ $= \underbrace{\left(-\frac{1}{R}\right) \times \frac{1}{R} + \dots + \left(-\frac{1}{R}\right) \times \frac{1}{R}}_{n}$ $= \underbrace{\left(-\frac{1}{R}\right) + \dots + \left(-\frac{1}{R}\right)}_{mn} = -mn \underbrace{\frac{1}{R}}_{n}$

Similarly we can get C(m) C(-n) = C(-mn) and C(-m) C(-n) = C(mn).

$$C(o) C(\pm n) = o \cdot C(\pm n) = o = C(o)$$

 $C(\pm m) C(0) = C(\pm m) \cdot 0 = 0 = C(0) \cdot$

Def. The characteristic of a ring R is zero if

there is no positive integer n such that nx=o for any xeR.

Characteristic of a ring

Monday, August 28, 2017

If for some positive integer n we have nx = 0 for any $x \in \mathbb{R}$,

the characteristic of R is the smallest such number.

So char(R) x = 0 for any $x \in \mathbb{R}$.

Proposition. Let l= 1.c.m. & ond (x) | x = R} where ord (x) is

the order of x in (R,+). If $l < \infty$, then char(R) = l. If $l = \infty$,

then char (R) = 0.

Pf. From group theory we know n = 0 if and only if $ord(x) \mid n$.

So if Ine ZT, Yx ER, nx=0, then ord(x)'s have a common

multiple as x ranges in R. And so

char (R) $\neq 0 \iff l = 1 \cdot c \cdot m \cdot \frac{2}{2} \cdot \frac{1}{2} \cdot \frac{1$

 $\forall x \in \mathbb{R}$, char(R) x = 0 implies ord(x) | char(R). Hence $l \mid char(R)$.

If char(R)≠0, l| char(R) implies l≤char(R).

 $\forall x \in \mathbb{R}$, ord $(x) \{ l \Rightarrow lx = 0 \}$ this implies $\operatorname{char}(\mathbb{R}) \leq l$.

Therefore, if char (R) =0, then char (R) = L.

Next we will find the characteristic of a unital ring.

Characteristic of a unital ring

Monday, August 7, 2017 4:46 P

Lemma. For a unital ring R, I.c.m. $\frac{2}{2}$ ord $\frac{1}{2}$ ord $\frac{1}{2}$.

And so char(R) = $\frac{3 \text{ ord}(1_R)}{0}$ if $\frac{1}{R}$ ord $\frac{1}{R}$ = $\frac{1}{R}$ ord $\frac{1}{R}$ ord $\frac{1}{R}$ = $\frac{1}{R}$ ord $\frac{1}{R}$ ord $\frac{1}{R}$ = $\frac{1}{R}$ ord $\frac{1}{R}$

Pf. If $ord(1_R) = \infty$, then by the definition of the character.

of a ring, we have char (R) = o. And the claim follows.

If $ord(1_R)=n < \infty$, then $n 1_R=0$. So for any $a \in R$, we have

 $(n + 1_R) \cdot a = 0 \cdot a = 0$, which implies

 $0 = (\frac{1}{R} + \dots + \frac{1}{R}) \cdot \alpha = \frac{\alpha_{+} \dots + \alpha_{-}}{n} = n\alpha.$

And so ord(a) in; and the claim follows.

Lemma. Let $c: \mathbb{Z} \to \mathbb{Z}_n$, $c(a) = a 1_{\mathbb{Z}_n}$. Then

c(a) is the remainder of a divided by n.

Pf. Suppose q is the quotient and r is the remainder of

a divided by n. Then a = nq+r. So

 $C(\alpha) = (nq+r) \frac{1}{Z_n} = r \frac{1}{Z_n} = \frac{1}{Z_n} + \dots + \frac{1}{Z_n} = r \cdot \frac{1}{Z_n}$ Since $n \frac{1}{Z_n} = 0$

Homomorphisms between Zn's

Monday, August 7, 2017

5:00 PM

Propositions. Let m,neZt. Then

 $c_{m,n}: \mathbb{Z}_m \to \mathbb{Z}_n$, $c_{m,n}(a) = a 1_{\mathbb{Z}_n}$ is a homomorphism if and only if $n \mid m$.

Pf: (=>) If Cm,n is a group homomorphism from

 $(\mathbb{Z}_{m},+)$ to $(\mathbb{Z}_{n},+)$, then

 $m \quad 1_{\mathbb{Z}_n} = m \quad c_{m,n} \left(1_{\mathbb{Z}_m} \right) = c_{m,n} \left(m \quad 1_{\mathbb{Z}_m} \right)$ $= c_{m,n} \left(o_{\mathbb{Z}_m} \right) = o_{\mathbb{Z}_n}.$

So the additive order of 1 In should divide m,

cohich means n m.

 $(\Leftarrow) \cdot c_{m,n} (a \oplus_{m} b) = (a \oplus_{m} b) 1_{\mathbb{Z}_n} \stackrel{n}{=} a \oplus_{m} b$

 $a \oplus_{m} b \stackrel{m}{\equiv} a + b$, which means $m \mid a + b - a \oplus_{m} b$.

Since n/m, we get that n/a+b-a+b. So

 $a \oplus_{m} b \stackrel{n}{=} a + b$. Hence

 $c_{m,n}(a \oplus_{m} b) \stackrel{n}{=} a + b \stackrel{n}{=} a \oplus_{n} b$. Thus $c_{m,n}(a \oplus_{m} b) = a \oplus_{n} b$.

 $\begin{array}{c} c_{m,n}(a \otimes_m b) = (a \otimes_m b) \stackrel{1}{Z_n} \stackrel{n}{=} a \otimes_m b \stackrel{n}{=} h \\ a \otimes_m b \stackrel{m}{=} a \otimes_m b \stackrel{n}{=} ab \\ n \mid m \end{array}$

Modern Chinese remainder theorem

Monday, August 7, 2017

c_{m,n} (aomb) = ab = aonb, which implies

$$C_{m,n}(\alpha \circ_m b) = \alpha \circ_n b$$

And so $C_{m,n}$ is a homomorphism.

Remark. If m, n \ Z and n |m, then the following

is a "commutative diagram"

where
$$c_m(a) = a i_{\mathbb{Z}_m}$$

$$c_m \downarrow c_n$$
and $c_n(a) = a i_{\mathbb{Z}_n}$;
$$\mathbb{Z}_m \xrightarrow{c_{m,n}} \mathbb{Z}_n$$

this means $C_n = C_{m,n} \circ C_m$

Theorem. Let $r, s \in \mathbb{Z}^+$ and gcd(r, s) = 1. Then $\mathbb{Z}_s \simeq \mathbb{Z}_r \times \mathbb{Z}_s.$

Proof. Let $\phi: \mathbb{Z}_r \times \mathbb{Z}_s$ be

 $= (c_{rs,r}(a), c_{rs,s}(a))(c_{rs,r}(b), c_{rs,s}(b)) = \phi(a) \phi(b).$

And similarly one can show $\varphi(a+b) = \varphi(a) + \varphi(b)$

Notice that, since rirs and sirs, by Proposition Crs, r and

Modern Chinese remainder theorem

Monday, August 7, 2017

Crs,s are homomorphisms.

Since ϕ is a group homomorphism, it is injective

if and only if it's kernel is 20%.

$$\phi(\alpha) = 0 \iff C_{rs,r}(\alpha) = 0$$
 and $C_{rs,s}(\alpha) = 0$

$$\Leftrightarrow$$
 $a1_{Z_r} = 0$ and $a1_{Z_s} = 0$

since the } r | a and s | a

additive \Rightarrow rs | a \Rightarrow a=0 in \mathbb{Z}_{rs} .

I \Rightarrow rs | a \Rightarrow a=0 in \mathbb{Z}_{rs} .

Since $\gcd(r,s)=1$

[Recall. If gcd(r,s)=1, then $\exists x,y \in \mathbb{Z} s.t.$

$$r x + s y = 1$$
. So $a = arx + asy$.

$$r|a \Rightarrow a = rk$$

So rs a.]

Hence ϕ is injective. Since $|\mathbb{Z}_{rs}| = rs = |\mathbb{Z}_r \times \mathbb{Z}_s|$, we get that ϕ is also surjective.

```
Euler's phi function
```

Monday, August 7, 2017 10:33 PM

Def. Let R be a unital ring. An element x = R is called a unit if $\exists x \in \mathbb{R}$ such that xx = x x = 1. The set of all the units of R is denoted by U(R).

<u>Ex.</u> U(Q) = Q \{o\$

 $\mathbf{Ex.} \quad \mathbf{U}(\mathbf{Z}) = \{1, -1\}$

 \mathbb{P} a \mathbb{P} \mathbb{P} \Rightarrow $|\alpha| |\alpha'| = 1 \Rightarrow 0 < |\alpha| \le 1$ \Rightarrow $|a|=1 \Rightarrow a=1 \text{ or } -1$. $1 \times 1 = 1$ and $(-1) \times (-1) = 1$. So 1,-1 & U(Z).

Lemma. $U(\mathbb{Z}_n) = \frac{3}{2} \times \mathbb{Z}_n \setminus \gcd(\times, n) = 1\frac{3}{2}$.

 $\frac{\mathbb{P}}{\mathbb{P}} \propto \in \mathcal{U}(\mathbb{Z}_n) \Rightarrow \exists x' \in \mathbb{Z}_n , \quad x \circ x' = 1$

 $\Rightarrow \exists x' \in \mathbb{Z}, xx' \equiv 1 \pmod{n}$

 $\Rightarrow \exists x', k \in \mathbb{Z}, xx'-1 = n k$

 $\Rightarrow \exists x', k \in \mathbb{Z}, xx-n k=1 \Rightarrow gcd(x,n)=1.$

 $gcd(x,n)=1 \Rightarrow \exists r, s \in \mathbb{Z}, xr+ns=1$ $\Rightarrow x r \equiv 1 \pmod{n}$

 $\Rightarrow \chi_{0}C_{n}C_{n}=1 \Rightarrow \chi \in U(\mathbb{Z}_{n})$

Def. (The Euler ϕ -function) For $n \in \mathbb{Z}^+$, let $\phi(n) = |U(\mathbb{Z}_n)|$.

Proposition. Let $r, s \in \mathbb{Z}^+$ and suppose gcd(r, s) = 1.

Then $\phi(rs) = \phi(r) \phi(s)$, where ϕ is the Euler func.

 $\frac{PF}{r}$ By the Chinese Remainder Theorem $\exists f: \mathbb{Z}_r \xrightarrow{\sim} \mathbb{Z}_r \times \mathbb{Z}_s$.

Division ring and field

Monday, August 7, 2017

$$x \in U(\mathbb{Z}_{rs}) \iff f(x) \in U(\mathbb{Z}_r \times \mathbb{Z}_s) \pmod{?}$$

$$\iff f(x) \in U(\mathbb{Z}_r) \times U(\mathbb{Z}_s) \pmod{?}$$

So $|U(\mathbb{Z}_r)| = |U(\mathbb{Z}_r)| |U(\mathbb{Z}_s)|$. Hence $\phi(rs) = \phi(r)\phi(s)$.

Def. A unital ring D is called a division ring if

UCD)=D1803; that means any non-zero element is a unit (has an inverse.).

. A commutative division ring is called a field.

Exercise. Show that $H = 2\left[\frac{z}{\omega}\right] | \omega_1 z \in \mathbb{C}_{2}$ is a

non-commutative division ring.

[Hint. Assuming H is a ring, let's show U(H)= H203.

Recall that
$$\begin{bmatrix} a & b \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \end{bmatrix}$$
. So

$$\begin{bmatrix} Z & \omega \end{bmatrix} = \underbrace{1}_{Z \cdot \overline{Z} + \omega \cdot \overline{\omega}} \begin{bmatrix} \overline{Z} & -\omega \\ \overline{\omega} & \overline{Z} \end{bmatrix} = \underbrace{1}_{|\overline{Z}|^2 + |\omega|^2} \begin{bmatrix} \overline{Z} & -\omega \\ \overline{\omega} & \overline{Z} \end{bmatrix}$$

=
$$\begin{bmatrix} a & b \end{bmatrix}$$
 where $a = \frac{\overline{Z}}{|Z|^2 + |\omega|^2}$ and

$$b = -\omega/|z|^2 + |\omega|^2$$

Notice that if $\begin{bmatrix} \overline{z} & \omega \\ -\overline{\omega} & \overline{z} \end{bmatrix} \neq 0$, then $|z|^2 + |\omega|^2 \neq 0$.