Introduction

Sunday, August 6, 2017 11:57 PM

.Historically algebra was created to understand zeros of polynomial equations. Now, being familiar with symbolic algebra, it is easy for us to find zeros of degree 1 or degree 2 polynomials. In 11 century Khayyam more or less found zeros of a degree 3. We had to coait till 16th century for Fernari to give us a method of finding zeros of a degree 4 polynomial. In 1824 Abel proved that there is no solution in radicals to the general polynomial equation of degree ≥ 5 . In 1832 Galois taught us how one should study zeros of polynomials. . Another problem which had a great deal of influence on shaping modern algebra was Fermat's last conjecture. . In the above mentioned problems, one has to add a zero of a polynomial to either Q or Z and see what the properties of the new "system of numbers" are. This is how ring

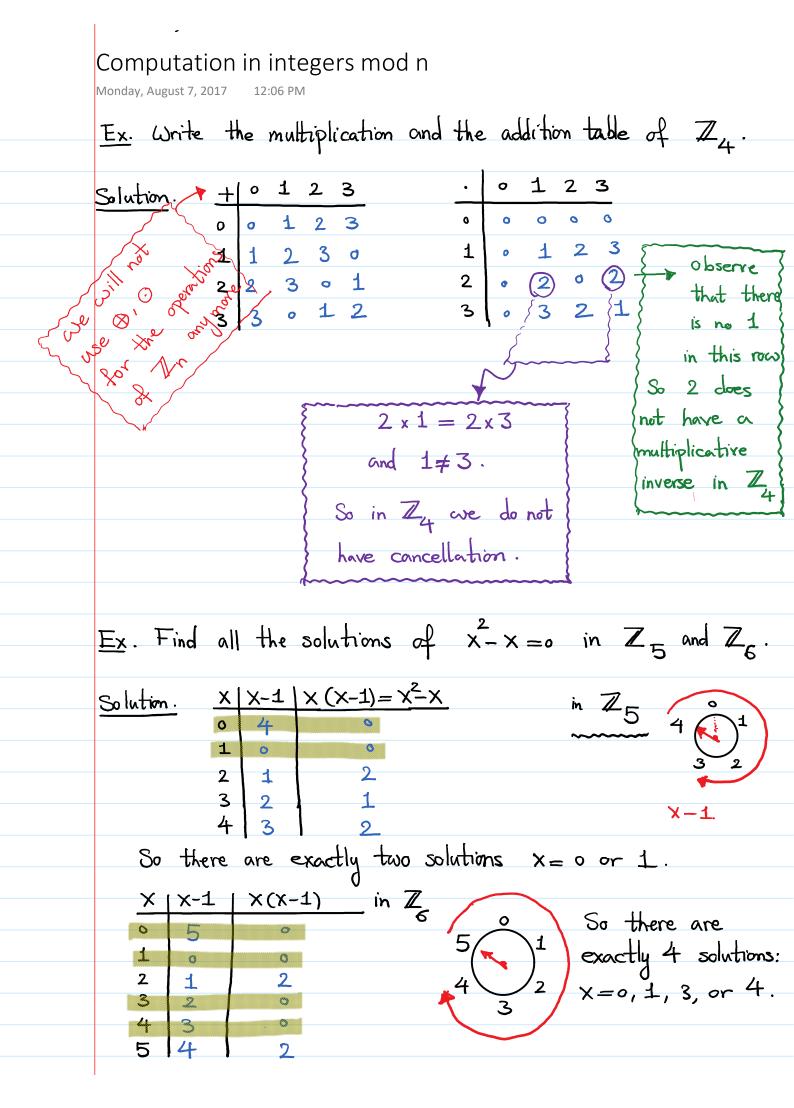
Definition of ring; Monday, August 7, 2017 12:43 AM theory is created. In this course, we will study basics of ring theory and properties of polynomials with coefficients in Z (or any other ring). We will see the beginning of field theory as well. <u>Def.</u> A ring (R,+,.) is a set R with two binary operations: + (addition) and . (multiplication) such that the following holds: $(\mathbb{D}(\mathbb{R},+))$ is an abelian group. (2) (associativity) $\forall a, b, c \in \mathbb{R}$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ 3 (distribution) Va, b, c e R, a.(b+c) = a.b+a.c and (b+c).a=b.a+c.a. We say R is unital if I IER, YreR, $1_{\mathcal{D}} \cdot r = r = r \cdot 1_{\mathcal{R}}$ And such an element IR is called the unity or identity of R. We say R is commutative if Va, beR, a.b=b.a.

Examples Monday, August 7, 2017 .Z, Q, R, C are unital commutative rings $\mathbb{Z}^{2^{\circ}}$ is NOT a ring as $(\mathbb{Z}^{2^{\circ}}, +)$ is NOT a group. $M_n(Q) :=$ the set of nxn rational matrixes with addition and multiplication of matrixes is a unital ring which is NOT commutative if $n \ge 2$. In fact, for any ring R, Mn(R) is a ring. (Check why this is the case.) · 2Z is a commutative ring which is NOT unital. $\mathbb{Z}_{n} := \{0, 1, ..., n-1\}$ $\forall a, b \in \mathbb{C}_{n}$, let $a \oplus b$ be the remainder of a+b divided by n, and a0b be the remainder of a b divided by n. Then \mathbb{Z}_n is a unital commutative ring. To show this we start by recalling congruence arithmetic Def. For two integers a and b we say alb if b is an integer multiple of a; that means b=ak for

Congruences
Monday, August 7, 2017 1223 MM
some integer k. We say a is congruent to b modulo n
for some a, be Z and
$$n \in \mathbb{Z}^+$$
 and write $a \equiv b \pmod{n}$
or $a \stackrel{n}{=} b$ if $n \mid a - b$; that means $a - b = n = n$
for some integer k.
Basic Properties of congruences.
• $a_1 \equiv a_2 \pmod{n}$ $p \Rightarrow a_1 \equiv a_3 \pmod{n}$
 $a_2 \equiv a_3 \pmod{n}$ $p \Rightarrow a_1 \equiv a_3 \pmod{n}$
• $a_4 \equiv a_2 \pmod{n}$ $p \Rightarrow a_1 \equiv a_2 \pmod{n}$
• $a_4 \equiv a_2 \pmod{n}$ $p \Rightarrow a_1 \equiv a_2 \pmod{n}$
• $a_4 \equiv a_2 \pmod{n}$ $p \Rightarrow a_4 \pm b_4 \equiv a_2 + b_2 \pmod{n}$
 $b_1 \equiv b_2 \pmod{n}$ $f \Rightarrow a_4 \pm a_2 + b_2 \pmod{n}$
• $a_4 \equiv a_2 \pmod{n}$ $p \Rightarrow a_4 \pm a_2 + b_2 \pmod{n}$
• $a_4 \equiv a_2 \pmod{n}$ $p \Rightarrow a_4 \pm a_2 + b_2 \pmod{n}$
• $a_4 \equiv a_2 \pmod{n}$ $p \Rightarrow a_4 \equiv a_2$
• $\leq a_4 a_2 < n$
Proof $af \circledast a_4 \equiv a_2 \Rightarrow \exists k \in \mathbb{Z}, a_4 - a_2 = k n$.
 $b_4 \equiv b_2 \Rightarrow \exists l \in \mathbb{Z}, b_4 - b_2 = l n$.
So $a_4 b_4 - a_2 b_2 = a_4 b_4 - a_2 b_2$
 $= (a_4 - a_2) b_4 + a_2 (b_4 - b_2)$
 $= kn b_4 + a_2 ln = n (k b_4 + l a_2)$
 $\Rightarrow n \mid a_4 b_4 - a_3 b_4 \Rightarrow a_4 b_4 \equiv a_3 b_2 \pmod{n}$.

math103b-s-17 Page 4

Division algorithm and congruences Monday, August 7, 2017 8:36 AM <u>Recall</u>. Division algorithm for any $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^{T}$, there is a unique pair (q,r) of integers such that $\bigcirc \circ \leq r < n \qquad (2) \qquad (a = nq + r).$ q is called the quotient and r is called the remainder of a divided by n. <u>Remark</u>. If r is the remainder of a divided by n, then Using the above remark we have: $\forall a, b \in \mathbb{Z}_n$, $a \oplus b \equiv a + b \pmod{n}$ "we can remove the circle!" and $a \odot b \equiv ab \pmod{n}$. Part of the argument of $\cosh \left(\mathbb{Z}_n, \oplus, \odot\right)$ is a ring. $\begin{array}{c} \alpha \oplus \circ \stackrel{n}{=} \alpha + \circ \stackrel{n}{=} \alpha \\ \circ \leq \alpha \oplus \circ, \ \alpha < n \end{array} \xrightarrow{} \begin{array}{c} \alpha \oplus \circ = \alpha \\ \circ \end{array}$ $0 \oplus \alpha \stackrel{n}{=} \circ + \alpha \equiv \alpha \implies \circ \oplus \alpha = \alpha$ $a \neq o$ and $a \in \mathbb{Z}_n$, then $o < a < n \Rightarrow o < n - a < n$. So $n-a \in \mathbb{Z}_n$. And $(n-a) \oplus a \stackrel{n}{=} (n-a) + a \stackrel{n}{=} n \stackrel{n}{=} 0$.



Direct product of rings Monday, August 7, 2017 2:09 PM Suppose R1, R2, ..., Rn are rings. Then the direct product RIX....xRn is a ring with componentwise operations; that means $(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$ $(a_1, ..., a_n) \cdot (b_1, ..., b_n) = (a_1, b_1, ..., a_n, b_n).$ It is easy to see that $R_1 \times \dots \times R_n$ is a ring. Notice if Ris are unital rings, then (1_{R1}, ..., 1_{Rn}) is the unity of R1x...xRn. (why?) Ex. Write the multiplication table of $\mathbb{Z}_2 \times \mathbb{Z}_3$. Solution. (0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(0,0)(0,0)(0,0)(0,0)(0,0)(0,0)(0,0)Product No cancellation (0,1) (0,0) (0,1) (0,2) (0,0) (0,1) (0,2) of two (0,2) (0,0) (0,2) (0,1) (0,0) (0,2) (0,1)non-zero $(1, \circ)$ $(0, \circ)$ $(0, \circ)$ $(0, \circ)$ $(1, \circ)$ $(1, \circ)$ $(1, \circ)$ element the unity (1,1)(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)might be (1,2) (0,0) (0,2) (0,1) (1,0) (1,2) (1,1)(0,0) As in group theory, what is important is the algebraic structure and not the underlying set: so next we define homomorphism and isomorphism -

Homomorphism and isomorphism

Monday, August 7, 2017 2:27 PM

<u>Def.</u> Let R and R' be two rings. A map $\Rightarrow : \mathbb{R} \rightarrow \mathbb{R}'$ is called a (ring) homomorphism if ① ↓ is a group homomorphism of (R,+). (2) $\varphi(ab) = \varphi(a) \varphi(b)$ for any $a, b \in \mathbb{R}$. A bijective homomorphism $\phi: \mathbb{R} \longrightarrow \mathbb{R}'$ is called an isomorphism. We say R is isomorphic to R' and write $\mathbb{R} \simeq \mathbb{R}'$ if there is an isomorphism $\Phi: \mathbb{R} \longrightarrow \mathbb{R}'$. Remark. () can be replaced with $\varphi(a+b) = \varphi(a) + \varphi(b)$. Notice that, if $\varphi(a+b) = \varphi(a) + \varphi(b)$, then $\bullet (\circ) = \phi(\circ + \circ) = \phi(\circ) + \phi(\circ) \implies \phi(\circ) = \circ$ • $\phi(0) = \phi(a + (-a)) = \phi(a) + \phi(-a) \Rightarrow \phi(-a) = - \phi(a)$. So ϕ is a group homomorphism of $(\mathbb{R},+)$. In the next lecture we will prove: Lemma Suppose $m, n \in \mathbb{Z}$ and gcd(m, n) = 1. Then $\mathbb{Z}_{mn} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$