Exam 1

Name: _		
PID:		
Section:		

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

- 1. Write your Name, PID, and Section on the front page of your exam.
- 2. No calculators or other electronic devices are allowed during this exam.
- 3. Read each question carefully, and answer each question completely.
- 4. Write your solutions clearly in the exam sheet.
- 5. Show all of your work; no credit will be given for unsupported answers.
- 1. Compute the product in the given ring.
 - (a) (4 points) (12, 16)(16, 3) in $\mathbb{Z}_{24} \times \mathbb{Z}_{32}$.

(b) (4 points) $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ in $M_2(\mathbb{Z}_6)$.

(c) (2 points) $(2^{-1})(3)$ in \mathbb{Z}_{11} .

2. (10 points) Describe all the ring homomorphisms of $\mathbb{Z} \times \mathbb{Z}$ into \mathbb{Z}_7 . Justify your answer.

- 3. Let $R = \mathbb{Z}_6 \times \mathbb{Z}_4 \times \mathbb{Z}_9$.
 - (a) (5 points) Find the characteristic of R. Justify your answer.

(b) (5 points) Find the number of units of R. Justify your answer.

4. (10 points) We are told that $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$ is a subring of \mathbb{R} . Show that it is a field. (You do not have to prove that $\sqrt{2}$ is an irrational number.) 5. (10 points) Suppose R is a unital ring with no zero-divisors. Show that if xy = 1 for $x, y \in R$, then yx = 1. Justify your answer. (Hint: consider (xy)x)

Good Luck!