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Problem set

1. 1. Suppose E is a finite integral domain of characteristic p. Let Fp : E → E,Fp(x) := xp.
Prove that Fp is a ring isomorphism. (Long ago in class we proved that Fp is a ring
homomorphism in any ring of characteristic p when p is prime. Go over your notes and
rewrite that part of the argument as well. Notice that you have to argue why p is prime
and why Fp is a bijection.)

Proof. Since E is finite ring, characteristic of E cannot be 0 (otherwise {1, 1 + 1, . . . } is
infinite set in E). Moreover, since E is a domain, we have seen in class that characteristic
p has to be a prime number.

Note that using binomial theorem

Fp(x+ y) = (x+ y)p =

p∑
i=0

(
p

i

)
xi = xp + yp = Fp(x) + Fp(y)

, since p divides
(
p
r

)
for 0 < r < p. Moreover, since E is commutative Fp(xy) = xpyp =

Fp(x) for all x, y ∈ E. Thus Fp is a ring homomorphism.

Note that Ker(Fp) ⊂ E is a ideal since Fp is a ring homomorphism. However the
only possible ideals in a field E (finite integral domain is a field) are {0} or E. Since
Fp(1) = 1, we get that Ker(Fp) = {0} thus Fp is injective. Since E is finite, Fp is
bijective hence an isomorphism.

2. (a) Prove that the minimal polynomial of α =
√

1 +
√

3 is f(x) = x4 − 2x2 − 2.

Proof. Note that α2 − 1 =
√

3, hence(α2 − 1)2 = 3 which simplifies to f(α) = 0. To
show that f(x) is the minimal polynomial satisfying f(α) = 0, we need to show f(x) is
irreducible. We obtain this by applying Eisenstein’s criterion for prime p = 2.

(b) Prove that Q[α] := {c0 + · · ·+ c3α
3|c0, c1, c2, c3 ∈ Q} is a subring of C.
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Proof. It is enough to show that Q[α] is closed under addition and multiplication. For
any polynomial g(x) ∈ Q[x], by euclidean algorithm for polynomials there exists poly-
nomials q(x), r(x) ∈ Q[x] such that g(x) = q(x)f(x) + r(x) where deg(f) > deg(r).
We apply it in our situation by noting that any polynomial in α (call it g(α)), g(α) =
f(α)q(α) + r(α) = r(α) since f(α) = 0, where degree of r(x) is less than 3. That is to
say g(α) = r(α) = a0 + a1α + a2α

2 + a3α
3 ∈ Q[α].

Multiplication or addition in Q[α] is a polynomial in α hence by above argument it can
be represented by elements in Q.

(c) Prove that Q[x]/〈f(x)〉 ∼= Q[α].

Proof. Let φα : Q[x]→ C be the evaluation homomorphism which takes any polynomial
g(x) to g(α) ∈ C. Observe that from previous problem we note that image of φα is Q[α].
Moreover we know that Ker(φα) = 〈f(x)〉, so the required result follows from the first
isomorphism theorem.

(d) Write α−1 in term of c0 + c1α + c2α
2 + c3α

3 with ci ∈ Q.

Proof. Observe that f(α) = α4−2α2−2 = 0, thus by dividing α, we obtain α3−2α− 2
α

=
0 which implies

α−1 =
α3 − 2α

2
.

(e) Write (1 + α)−1 in the form c0 + c1α + c2α
2 + c3α

3 with ci ∈ Q.

Answer. Let g(y) = f(y − 1) = (y − 1)4 − 2(y − 1)2 − 2 = y4 − 4y3 + 4y2 − 3, and note
that g(α+ 1) = f(α) = 0. Thus by the same procedure as before, y3− 4y2 + 4y− 3

y
= 0

for y = α + 1, which implies

(α + 1)−1 =
(α + 1)3 − 4(α + 1)2 + 4(α + 1)

3

3. Suppose E is a finite field that contains Z3 as a subring. Suppose there is α ∈ E such
that α3 − α + 1 = 0. Let φα : Z3[x]→ E be the map of evaluation at α.
(a) Prove that kerφα = 〈x3 − x+ 1〉.

Proof. Note that Z3 is a field hence Z3[x] is a principle ideal domain (PID) and φα is a
homomorphism. Thus kerφα = 〈g(x)〉 for some g(x) ∈ Z3[x].

Let f(x) := x3 − x + 1. Note that f(x) is irreducible since it degree 3 polynomial with
no zeros. Moreover φα(f(x)) = f(α) = 0, thus f(x) ∈ kerφα = 〈g(x)〉, which implies
f(x) = g(x)h(x). Since f(x) is irreducible and g(x) is not a constant polynomial, h(x)
is a (non-zero) constant as polynomial. Hence kerφα = 〈f(x)〉.
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(b) Prove that Imφα = {c0 + c1α + c2α
2|c0, c1, c2 ∈ Z3}.

Proof. Note that image of φα consists of all polynomials in α (i.e g(α) ∈ E where
g(x) ∈ Z3[x]). We have seen that euclidean algorithm for polynomials over any field,
thus for any polynomial g(x) ∈ Z3[x], there exists polynomials q(x), r(x) ∈ Z3[x] such
that g(x) = q(x)f(x) + r(x) where 3 deg(f) > deg(r). Applying this to our situation,
we see that g(α) = r(α) = c0 + c1α + c2α

2, where ci ∈ Z3.

(c)Let us denote the image of φα by Z3[α]. Prove that Z3 is a finite field with 27 elements.

Proof. Note that c0 + c1α+ c2α
2 = 0 implies c0 = c1 = c2 = 0 because f(x) = x3−x+ 1

is the minimal polynomial satisfying f(α) = 0. Thus c0 + c1α + c2α
2 = b0 + b1α + b2α

2

implies ci = bi for all i. Hence by using part (b) we conclude that Z3[α] is in set theoretic
bijection with Z3×Z3×Z3 given by c0+c1α+c2α

2 → (c0, c1, c2). Thus there are precisely
33 = 27 elements in Z3[α].

Note that Z3[α] is a subring of the field E (since it is the image of a homomorphism),
thus Z3[α] is an integral domain. Since any finite integral domain is a field, we conclude
Z3[α] is a field.

4. Suppose I and J are two ideals of a commutative ring R.
(a) Prove that I ∩ J is an ideal of R.

Proof. Let a, b ∈ I ∩ J and r ∈ R, then a, b ∈ I and a, b ∈ J . Since I and J are ideals,
(a+ b), ar are both in I and J , hence (a+ b), ar ∈ I ∩ J . Thus I ∩ J is an ideal.

(b) Let I + J := {x+ y|x ∈ I, y ∈ J}. Prove that I + J is an ideal of R.

Proof. Let a = (x+y), b = (x′+y′) ∈ I+J and r ∈ R, then a+b = (x+x′)+(y+y′) ∈ I+J
and ar = (xr + yr) ∈ I + J . Hence I + J is an ideal.

5. Suppose R is a unital commutative ring and x1, . . . , xn ∈ R.
(a) Let I = Rx1 +Rx2 + · · ·+Rxn = {r1x1 + · · ·+ rnxn}, where Rxi = 〈xi〉. Prove that
I is an ideal.

Proof. The proof is nearly same as the proof of part(b) of the previous problem.

(b) Prove that the ideal I is the smallest ideal that contains x1, . . . , xn.

Proof. Note that I contains x1, . . . , xn so we need to show that for any ideal J ⊂ R
containing x1, . . . , xn we have I ⊂ J . Any element a ∈ I can be written as a =
r1x1 + · · ·+ rnxn, we need to show that a ∈ J . This follows since xi ∈ J and ri ∈ R, we
get rixi ∈ J and hence

∑n
i=1 rixi = a ∈ J since J is an ideal.
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6. Let I := 〈2, x〉 = {2f(x) + xg(x) : f, g ∈ Z[x]}. Prove that I is not a principal ideal.
Deduce that Z[x] is not a PID.

Proof. Suppose I = 〈h(x)〉 for some h(x) ∈ Z[x]. Note that 2 = h(x)q(x) and x =
h(x)r(x) for some q(x), r(x) ∈ Z[x] because 2, x ∈ I. We use 2 = h(x)q(x) to con-
clude that deg h(x) = 0 as polynomial, thus h(x) = c where c|2. Moreover since
x = h(x)r(x) = cr(x), evaluating this equation at x = 1, we get 1 = cr(1) where
r(1) ∈ Z, thus c = ±1.

Although since c ∈ I, there exists f(x), g(x) ∈ Z[x] such that c = 2f(x) + xg(x).
Evaluating this equation at x = 0 we get c = 2f(0) + 0g(0) = 2f(0), since c = ±1 and
f(0) ∈ Z, we get a contradiction.

7. Suppose E is a finite field that contains Zp as a subring. Suppose a ∈ Z×p . Suppose
there is α ∈ E such that αp − α + a = 0.
(a) Prove that α + 1, α + 2, . . . α + (p− 1) are zeroes of g(x) = xp − x+ a.

Proof. Note that since characteristic of E is p, (α+β)p = αp+βp for all α, β ∈ E. Thus

(α + i)p − (α + i) + a = αp − α + a+ ip − i = 0,

since αp − α + a = 0 and by Fermat’s little theorem ip − i = 0 for i ∈ {0, 1, . . . , p− 1}.
Thus α, α + 1, α + 2, . . . α + (p− 1) are zeroes of g(x) = xp − x+ a

(b) Prove that in E[x] we have

xp − x+ a = (x− α)(x− α + 1) . . . (x− α + p− 1).

Proof. By using generalized factor theorem h(x) := (x−α)(x−α+ 1) . . . (x−α+p−1)
divides g(x) = xp − x+ a since α, α+ 1, α+ 2, . . . α+ (p− 1) are distinct zeros of g(x).
Observe that deg h(x) = deg g(x), thus g(x) = ch(x), and since leading term of both
g(x) and h(x) are 1, we get g(x) = h(x) as required.

(c) Suppose f(x) is a (monic) divisor of g(x) = xp − x+ a. Argue why f(x) = (x− α−
i1) . . . (x− α− id) for some i1, . . . id ∈ Zp.

Proof. We can write g(x) = f(x)t(r) for some polynomial t(x) ∈ E[x]. Since g(α+i) = 0
for i ∈ {0, 1, . . . , p − 1}, for each i, either f(α + i) = 0 or t(α + i) = 0. Let S = {iZp :
f(α + i) = 0} and T = {i ∈ Zp : t(α + i) = 0}, thus S ∪ T = {0, 1, . . . , p− 1}.
By generalized factor theorem,

q1(x)
∏
i∈S

(x− α− i) = f(x)

q2(x)
∏
i∈T

(x− α− i) = t(x)
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and we have deg f(x) = |S| + deg q1(x) and deg t(x) = |T || deg q2(x). We also know
deg f(x) + deg t(x) = deg g(x) = p, we get |S|+ |T |+ deg q1(x) + deg q2(x) = p = |S ∪T |
which is only possible when deg qi = 0 for i = 1, 2 and S ∩ T = {}. In particular we get
f(x) =

∏
i∈S(x− α− i) as required.

(d) Show that coefficient of xd−1 of f is −(dα + i1 + · · ·+ id).

Proof. We have f(x) = (x−α− i1) . . . (x−α− id), simply by expanding the polynomial
we see that coefficient of xd−1 is −(α + i1)− · · · − (α + id) = −(dα + i1 + · · ·+ id).

(e) Suppose f(x) ∈ Zp[x] is a divisor of xp−x+a and 0 < deg f < p. Prove that α ∈ Zp.

Proof. Note that f(x) ∈ Zp[x] implies that coefficient of xd−1 is in Zp. Thus by part
(b), dα + i1 + · · · + id ∈ Zp which implies α ∈ Zp since i1, . . . , id ∈ Zp and 0 6= d ∈ Zp
(we have used that fact that Zp is a field).

(f) Use previous part and Fermat’s little theorem to get a contradiction, and deduce
that xp − x+ a is irreducible.

Proof. Suppose f(x) is a divisor of xp−x+ a such that 0 < deg f < p, then by previous
part α ∈ Zp. By Fermat’s theorem, we know αp−α = 0 which is a contradiction because
α is a zero of xp − x+ a (that is α−α + a = 0) and a ∈ Z×.
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