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Problem set

1. 1. Suppose E is a finite integral domain of characteristic p. Let F}, : E — E, F,(x) := 2.
Prove that F) is a ring isomorphism. (Long ago in class we proved that F), is a ring
homomorphism in any ring of characteristic p when p is prime. Go over your notes and
rewrite that part of the argument as well. Notice that you have to argue why p is prime
and why F}, is a bijection.)

Proof. Since E is finite ring, characteristic of E cannot be 0 (otherwise {1,1+1,...} is
infinite set in £/). Moreover, since E is a domain, we have seen in class that characteristic
p has to be a prime number.

Note that using binomial theorem
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, since p divides (p) for 0 < r < p. Moreover, since E is commutative Fj,(zy) = aPy? =
F »(x) for all x,y € E. Thus F, is a ring homomorphism.

Note that Ker(F,) C E is a ideal since F}, is a ring homomorphism. However the
only possible ideals in a field E (finite integral domain is a field) are {0} or E. Since
F,(1) = 1, we get that Ker(F,) = {0} thus F, is injective. Since E is finite, F}, is
bijective hence an isomorphism. O

2. (a) Prove that the minimal polynomial of & = \/1+ /3 is f(z) = 2* — 222 — 2.
Proof. Note that o> — 1 = /3, hence(a? — 1)? = 3 which simplifies to f(a) = 0. To
show that f(z) is the minimal polynomial satisfying f(a) = 0, we need to show f(z) is
irreducible. We obtain this by applying Eisenstein’s criterion for prime p = 2. ]

(b) Prove that Q[a] := {co + - - - + c303|co, 1, ¢2, c3 € Q} is a subring of C.



Proof. Tt is enough to show that Q[a] is closed under addition and multiplication. For
any polynomial g(z) € Q[x], by euclidean algorithm for polynomials there exists poly-
nomials ¢(z),r(z) € Qx| such that g(x) = ¢(z)f(z) + r(z) where deg(f) > deg(r).
We apply it in our situation by noting that any polynomial in « (call it g(«)), g(a) =
fla)g(a) + r(a) = r(a) since f(a) = 0, where degree of r(z) is less than 3. That is to
say g(a) = r(a) = ap + a1 + asa® + aza® € Qlal.

Multiplication or addition in Q[«a] is a polynomial in « hence by above argument it can
be represented by elements in Q. O

(c) Prove that Q[z]/(f(z)) = Q|a].

Proof. Let ¢, : Q[z] — C be the evaluation homomorphism which takes any polynomial
g(x) to g(a) € C. Observe that from previous problem we note that image of ¢, is Q[a].
Moreover we know that Ker(¢,) = (f(x)), so the required result follows from the first
isomorphism theorem. O

(d) Write a~! in term of ¢y + ¢ + co0® + ¢33 with ¢; € Q.

Proof. Observe that f(a) = a*—2a*—2 = 0, thus by dividing a;, we obtain a® —2a—2 =
0 which implies

=2
o =
2

(e) Write (1 + a)~! in the form ¢y + c1a 4 c20” 4 30 with ¢; € Q.

Answer. Let gy) = fly—1)= (y — 1)* = 2(y — 1)? — 2 = y* — 49> + 4¢y*> — 3, and note
that g(a+ 1) = f(a) = 0. Thus by the same procedure as before, 3> — 4y? + 4y — % =0
for y = a4+ 1, which implies

e

]

. Suppose E is a finite field that contains Zs as a subring. Suppose there is a € E such
that o® —a +1=0. Let ¢, : Z3[x] — E be the map of evaluation at a.
(a) Prove that ker ¢, = (z* — z + 1).

Proof. Note that Zs is a field hence Z3[z] is a principle ideal domain (PID) and ¢, is a
homomorphism. Thus ker ¢, = (g(z)) for some g(z) € Zs[x].

Let f(x) := 23 — 2 + 1. Note that f(z) is irreducible since it degree 3 polynomial with
no zeros. Moreover ¢,(f(x)) = f(a) = 0, thus f(z) € ker ¢, = (g(x)), which implies
f(z) = g(z)h(x). Since f(x) is irreducible and g(x) is not a constant polynomial, h(x)
is a (non-zero) constant as polynomial. Hence ker ¢, = (f(x)). O
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(b) Prove that Im¢, = {co + c1a + cac®|cy, 1, ¢2 € Z3}.

Proof. Note that image of ¢, consists of all polynomials in « (i.e g(a) € E where
g(x) € Zs[z]). We have seen that euclidean algorithm for polynomials over any field,
thus for any polynomial g(z) € Zs|x], there exists polynomials ¢(x),r(x) € Zs[z] such
that g(x) = q(x)f(x) + r(x) where 3deg(f) > deg(r). Applying this to our situation,
we see that g(a) = r(a) = ¢g + cra + caa?, where ¢; € Zs. O

(c)Let us denote the image of ¢, by Zs[a]. Prove that Zs is a finite field with 27 elements.

Proof. Note that ¢+ cja + coa? = 0 implies ¢y = ¢; = ¢3 = 0 because f(x) = 2° —z +1
is the minimal polynomial satisfying f(a) = 0. Thus ¢y + cja + a0 = by + by + o
implies ¢; = b; for all i. Hence by using part (b) we conclude that Zs[a] is in set theoretic
bijection with Zsz x Zs x Zs3 given by cy+cia+caa? — (co, ¢1, ¢o). Thus there are precisely
3% = 27 elements in Zs[a/.

Note that Zs[a] is a subring of the field E (since it is the image of a homomorphism),
thus Zs[a] is an integral domain. Since any finite integral domain is a field, we conclude
Zsla is a field. O

. Suppose [ and J are two ideals of a commutative ring R.
(a) Prove that I N J is an ideal of R.

Proof. Let a,b € INJ and r € R, then a,b € I and a,b € J. Since I and J are ideals,
(a+0b),ar are both in I and J, hence (a +b),ar € I NJ. Thus I N J is an ideal. O

(b) Let I + J :={z+ylx € I,y € J}. Prove that I + J is an ideal of R.

Proof. Let a = (z+vy),b = (2'+y') € I+J and r € R, then a+b = (z+2')+(y+y') € I+J
and ar = (xzr +yr) € [ + J. Hence I + J is an ideal. O

. Suppose R is a unital commutative ring and z4,...,z, € R.
(a) Let I = Rxy+ Rxo+ -+ -+ Ry, = {riz1 + - -+ rpz,}, where Rx; = (x;). Prove that
I is an ideal.

Proof. The proof is nearly same as the proof of part(b) of the previous problem. O

(b) Prove that the ideal I is the smallest ideal that contains x1, ..., z,.

Proof. Note that I contains zi,...,z, so we need to show that for any ideal J C R
containing x,...,z, we have I C J. Any element a € [ can be written as a =
rmxy+ -+ rpx,, we need to show that a € J. This follows since z; € J and r; € R, we
get r;x; € J and hence E:.L:l rix; = a € J since J is an ideal. O



6. Let I := (2,z) = {2f(z) + zg(x) : f,g € Z[z]}. Prove that I is not a principal ideal.
Deduce that Z|x] is not a PID.

Proof. Suppose I = (h(zx)) for some h(x) € Z[z]. Note that 2 = h(z)g(x) and =z =
h(z)r(z) for some q(z),r(x) € Z[x] because 2,z € I. We use 2 = h(z)q(x) to con-
clude that degh(z) = 0 as polynomial, thus h(z) = ¢ where ¢|2. Moreover since
x = h(x)r(x) = cr(z), evaluating this equation at z = 1, we get 1 = cr(1) where
r(1) € Z, thus ¢ = £1.

Although since ¢ € I, there exists f(z),g(z) € Z[x] such that ¢ = 2f(x) + zg(z).
Evaluating this equation at z = 0 we get ¢ = 2f(0) + 0g(0) = 2£(0), since ¢ = £1 and
f(0) € Z, we get a contradiction. O

7. Suppose E is a finite field that contains Z, as a subring. Suppose a € Z;. Suppose
there is a € E such that a? —a +a = 0.
(a) Prove that a + 1, + 2,...a+ (p — 1) are zeroes of g(x) = 2P — z + a.

Proof. Note that since characteristic of E is p, (a+ )P = of + P for all o, 5 € E. Thus
(a+i)f —(a+i)+a=a’ —a+a+¥ —i=0,

since o — a+ a = 0 and by Fermat’s little theorem # — i =0 for i € {0,1,...,p — 1}.

Thus o, + 1, +2,...a+ (p — 1) are zeroes of g(z) =a? —z +a O

(b) Prove that in E[x] we have
—r+a=(r—a)zr—a+1l)...(r—a+p—1).

Proof. By using generalized factor theorem h(z) :== (r —a)(z —a+1)...(z—a+p—1)
divides g(x) = 2P — x + a since o, a + 1, + 2,...a + (p — 1) are distinct zeros of g(z).
Observe that degh(z) = degg(x), thus g(x) = ch(z), and since leading term of both
g(x) and h(z) are 1, we get g(x) = h(x) as required. O

(c) Suppose f(x) is a (monic) divisor of g(x) = 2 — x + a. Argue why f(z) = (v —a —
i1)...(x —a —ig) for some iy, ...iq € Z,.

Proof. We can write g(x) = f(z)t(r) for some polynomial t(x) € E[x]. Since g(a+i) =0
for i € {0,1,...,p — 1}, for each i, either f(a+14) =0 or t(aw +1i) = 0. Let S = {iZ,, :
flat+i)=0tand T ={i € Z, : t(a+1i) =0}, thus SUT = {0,1,...,p — 1}.

By generalized factor theorem,
a(@) [[(z—a—i) = f(o)
i€s

w@) [J(@—a—i) =)
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and we have deg f(z) = |S| 4+ degq:1(z) and degt(z) = |T|| deggz(x). We also know
deg f(z) +degt(x) = deg g(x) = p, we get |S|+|T|+deg qi(z) +deg g2(x) = p = [SUT]
which is only possible when degg; = 0 for i = 1,2 and SNT = {}. In particular we get
f(7) = [[icg(x — a — 1) as required. O

(d) Show that coefficient of 2471 of f is —(da + iy + - -+ +iq).

Proof. We have f(z) = (x —a—1y) ... (x —a—1i4), simply by expanding the polynomial
we see that coefficient of 2471 is —(a+iy) — - — (@ +iq) = —(da + iy + -+ +1iq). O

(e) Suppose f(x) € Zy[z] is a divisor of 2P —x+a and 0 < deg f < p. Prove that a € Z,.

Proof. Note that f(z) € Z,[x] implies that coefficient of z%~! is in Z,. Thus by part
(b), da + 1y + - - - +iq € Z, which implies o € Z, since iy, ...,iq € Z, and 0 # d € Z,
(we have used that fact that Z, is a field). O

(f) Use previous part and Fermat’s little theorem to get a contradiction, and deduce
that 2 — x + a is irreducible.

Proof. Suppose f(x) is a divisor of 2 — z + a such that 0 < deg f < p, then by previous
part o € Z,. By Fermat’s theorem, we know o —a = 0 which is a contradiction because
a is a zero of a7 — x +a (that is a”a+a =0) and a € Z*. O



