Math 103B - HW-4 (solution)

TA : Shubham Sinha

March 10, 2020

Problem set

1. 2. Suppose E is a finite integral domain of characteristic p. Let $F_{p}: E \rightarrow E, F_{p}(x):=x^{p}$. Prove that F_{p} is a ring isomorphism. (Long ago in class we proved that F_{p} is a ring homomorphism in any ring of characteristic p when p is prime. Go over your notes and rewrite that part of the argument as well. Notice that you have to argue why p is prime and why F_{p} is a bijection.)

Proof. Since E is finite ring, characteristic of E cannot be 0 (otherwise $\{1,1+1, \ldots\}$ is infinite set in E). Moreover, since E is a domain, we have seen in class that characteristic p has to be a prime number.
Note that using binomial theorem

$$
F_{p}(x+y)=(x+y)^{p}=\sum_{i=0}^{p}\binom{p}{i} x^{i}=x^{p}+y^{p}=F_{p}(x)+F_{p}(y)
$$

, since p divides $\binom{p}{r}$ for $0<r<p$. Moreover, since E is commutative $F_{p}(x y)=x^{p} y^{p}=$ $F_{p}(x)$ for all $x, y \in E$. Thus F_{p} is a ring homomorphism.
Note that $\operatorname{Ker}\left(F_{p}\right) \subset E$ is a ideal since F_{p} is a ring homomorphism. However the only possible ideals in a field E (finite integral domain is a field) are $\{0\}$ or E. Since $F_{p}(1)=1$, we get that $\operatorname{Ker}\left(F_{p}\right)=\{0\}$ thus F_{p} is injective. Since E is finite, F_{p} is bijective hence an isomorphism.
2. (a) Prove that the minimal polynomial of $\alpha=\sqrt{1+\sqrt{3}}$ is $f(x)=x^{4}-2 x^{2}-2$.

Proof. Note that $\alpha^{2}-1=\sqrt{3}$, hence $\left(\alpha^{2}-1\right)^{2}=3$ which simplifies to $f(\alpha)=0$. To show that $f(x)$ is the minimal polynomial satisfying $f(\alpha)=0$, we need to show $f(x)$ is irreducible. We obtain this by applying Eisenstein's criterion for prime $p=2$.
(b) Prove that $\mathbb{Q}[\alpha]:=\left\{c_{0}+\cdots+c_{3} \alpha^{3} \mid c_{0}, c_{1}, c_{2}, c_{3} \in \mathbb{Q}\right\}$ is a subring of \mathbb{C}.

Proof. It is enough to show that $\mathbb{Q}[\alpha]$ is closed under addition and multiplication. For any polynomial $g(x) \in \mathbb{Q}[x]$, by euclidean algorithm for polynomials there exists polynomials $q(x), r(x) \in \mathbb{Q}[x]$ such that $g(x)=q(x) f(x)+r(x)$ where $\operatorname{deg}(f)>\operatorname{deg}(r)$. We apply it in our situation by noting that any polynomial in α (call it $g(\alpha)$), $g(\alpha)=$ $f(\alpha) q(\alpha)+r(\alpha)=r(\alpha)$ since $f(\alpha)=0$, where degree of $r(x)$ is less than 3. That is to say $g(\alpha)=r(\alpha)=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+a_{3} \alpha^{3} \in \mathbb{Q}[\alpha]$.
Multiplication or addition in $\mathbb{Q}[\alpha]$ is a polynomial in α hence by above argument it can be represented by elements in \mathbb{Q}.
(c) Prove that $\mathbb{Q}[x] /\langle f(x)\rangle \cong \mathbb{Q}[\alpha]$.

Proof. Let $\phi_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{C}$ be the evaluation homomorphism which takes any polynomial $g(x)$ to $g(\alpha) \in \mathbb{C}$. Observe that from previous problem we note that image of ϕ_{α} is $\mathbb{Q}[\alpha]$. Moreover we know that $\operatorname{Ker}\left(\phi_{\alpha}\right)=\langle f(x)\rangle$, so the required result follows from the first isomorphism theorem.
(d) Write α^{-1} in term of $c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3}$ with $c_{i} \in \mathbb{Q}$.

Proof. Observe that $f(\alpha)=\alpha^{4}-2 \alpha^{2}-2=0$, thus by dividing α, we obtain $\alpha^{3}-2 \alpha-\frac{2}{\alpha}=$ 0 which implies

$$
\alpha^{-1}=\frac{\alpha^{3}-2 \alpha}{2} .
$$

(e) Write $(1+\alpha)^{-1}$ in the form $c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3}$ with $c_{i} \in \mathbb{Q}$.

Answer. Let $g(y)=f(y-1)=(y-1)^{4}-2(y-1)^{2}-2=y^{4}-4 y^{3}+4 y^{2}-3$, and note that $g(\alpha+1)=f(\alpha)=0$. Thus by the same procedure as before, $y^{3}-4 y^{2}+4 y-\frac{3}{y}=0$ for $y=\alpha+1$, which implies

$$
(\alpha+1)^{-1}=\frac{(\alpha+1)^{3}-4(\alpha+1)^{2}+4(\alpha+1)}{3}
$$

3. Suppose E is a finite field that contains \mathbb{Z}_{3} as a subring. Suppose there is $\alpha \in E$ such that $\alpha^{3}-\alpha+1=0$. Let $\phi_{\alpha}: \mathbb{Z}_{3}[x] \rightarrow E$ be the map of evaluation at α.
(a) Prove that ker $\phi_{\alpha}=\left\langle x^{3}-x+1\right\rangle$.

Proof. Note that \mathbb{Z}_{3} is a field hence $\mathbb{Z}_{3}[x]$ is a principle ideal domain (PID) and ϕ_{α} is a homomorphism. Thus ker $\phi_{\alpha}=\langle g(x)\rangle$ for some $g(x) \in \mathbb{Z}_{3}[x]$.
Let $f(x):=x^{3}-x+1$. Note that $f(x)$ is irreducible since it degree 3 polynomial with no zeros. Moreover $\phi_{\alpha}(f(x))=f(\alpha)=0$, thus $f(x) \in \operatorname{ker} \phi_{\alpha}=\langle g(x)\rangle$, which implies $f(x)=g(x) h(x)$. Since $f(x)$ is irreducible and $g(x)$ is not a constant polynomial, $h(x)$ is a (non-zero) constant as polynomial. Hence $\operatorname{ker} \phi_{\alpha}=\langle f(x)\rangle$.
(b) Prove that $\operatorname{Im} \phi_{\alpha}=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{0}, c_{1}, c_{2} \in \mathbb{Z}_{3}\right\}$.

Proof. Note that image of ϕ_{α} consists of all polynomials in α (i.e $g(\alpha) \in E$ where $\left.g(x) \in \mathbb{Z}_{3}[x]\right)$. We have seen that euclidean algorithm for polynomials over any field, thus for any polynomial $g(x) \in \mathbb{Z}_{3}[x]$, there exists polynomials $q(x), r(x) \in \mathbb{Z}_{3}[x]$ such that $g(x)=q(x) f(x)+r(x)$ where $3 \operatorname{deg}(f)>\operatorname{deg}(r)$. Applying this to our situation, we see that $g(\alpha)=r(\alpha)=c_{0}+c_{1} \alpha+c_{2} \alpha^{2}$, where $c_{i} \in \mathbb{Z}_{3}$.
(c)Let us denote the image of ϕ_{α} by $\mathbb{Z}_{3}[\alpha]$. Prove that \mathbb{Z}_{3} is a finite field with 27 elements.

Proof. Note that $c_{0}+c_{1} \alpha+c_{2} \alpha^{2}=0$ implies $c_{0}=c_{1}=c_{2}=0$ because $f(x)=x^{3}-x+1$ is the minimal polynomial satisfying $f(\alpha)=0$. Thus $c_{0}+c_{1} \alpha+c_{2} \alpha^{2}=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}$ implies $c_{i}=b_{i}$ for all i. Hence by using part (b) we conclude that $\mathbb{Z}_{3}[\alpha]$ is in set theoretic bijection with $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ given by $c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \rightarrow\left(c_{0}, c_{1}, c_{2}\right)$. Thus there are precisely $3^{3}=27$ elements in $\mathbb{Z}_{3}[\alpha]$.
Note that $\mathbb{Z}_{3}[\alpha]$ is a subring of the field E (since it is the image of a homomorphism), thus $\mathbb{Z}_{3}[\alpha]$ is an integral domain. Since any finite integral domain is a field, we conclude $\mathbb{Z}_{3}[\alpha]$ is a field.
4. Suppose I and J are two ideals of a commutative ring R.
(a) Prove that $I \cap J$ is an ideal of R.

Proof. Let $a, b \in I \cap J$ and $r \in R$, then $a, b \in I$ and $a, b \in J$. Since I and J are ideals, $(a+b)$, ar are both in I and J, hence $(a+b)$, ar $\in I \cap J$. Thus $I \cap J$ is an ideal.
(b) Let $I+J:=\{x+y \mid x \in I, y \in J\}$. Prove that $I+J$ is an ideal of R.

Proof. Let $a=(x+y), b=\left(x^{\prime}+y^{\prime}\right) \in I+J$ and $r \in R$, then $a+b=\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right) \in I+J$ and $a r=(x r+y r) \in I+J$. Hence $I+J$ is an ideal.
5. Suppose R is a unital commutative ring and $x_{1}, \ldots, x_{n} \in R$.
(a) Let $I=R x_{1}+R x_{2}+\cdots+R x_{n}=\left\{r_{1} x_{1}+\cdots+r_{n} x_{n}\right\}$, where $R x_{i}=\left\langle x_{i}\right\rangle$. Prove that I is an ideal.

Proof. The proof is nearly same as the proof of part(b) of the previous problem.
(b) Prove that the ideal I is the smallest ideal that contains x_{1}, \ldots, x_{n}.

Proof. Note that I contains x_{1}, \ldots, x_{n} so we need to show that for any ideal $J \subset R$ containing x_{1}, \ldots, x_{n} we have $I \subset J$. Any element $a \in I$ can be written as $a=$ $r_{1} x_{1}+\cdots+r_{n} x_{n}$, we need to show that $a \in J$. This follows since $x_{i} \in J$ and $r_{i} \in R$, we get $r_{i} x_{i} \in J$ and hence $\sum_{i=1}^{n} r_{i} x_{i}=a \in J$ since J is an ideal.
6. Let $I:=\langle 2, x\rangle=\{2 f(x)+x g(x): f, g \in \mathbb{Z}[x]\}$. Prove that I is not a principal ideal. Deduce that $\mathbb{Z}[x]$ is not a PID.

Proof. Suppose $I=\langle h(x)\rangle$ for some $h(x) \in \mathbb{Z}[x]$. Note that $2=h(x) q(x)$ and $x=$ $h(x) r(x)$ for some $q(x), r(x) \in \mathbb{Z}[x]$ because $2, x \in I$. We use $2=h(x) q(x)$ to conclude that $\operatorname{deg} h(x)=0$ as polynomial, thus $h(x)=c$ where $c \mid 2$. Moreover since $x=h(x) r(x)=\operatorname{cr}(x)$, evaluating this equation at $x=1$, we get $1=\operatorname{cr}(1)$ where $r(1) \in \mathbb{Z}$, thus $c= \pm 1$.
Although since $c \in I$, there exists $f(x), g(x) \in \mathbb{Z}[x]$ such that $c=2 f(x)+x g(x)$. Evaluating this equation at $x=0$ we get $c=2 f(0)+0 g(0)=2 f(0)$, since $c= \pm 1$ and $f(0) \in \mathbb{Z}$, we get a contradiction.
7. Suppose E is a finite field that contains \mathbb{Z}_{p} as a subring. Suppose $a \in \mathbb{Z}_{p}^{\times}$. Suppose there is $\alpha \in E$ such that $\alpha^{p}-\alpha+a=0$.
(a) Prove that $\alpha+1, \alpha+2, \ldots \alpha+(p-1)$ are zeroes of $g(x)=x^{p}-x+a$.

Proof. Note that since characteristic of E is $p,(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}$ for all $\alpha, \beta \in E$. Thus

$$
(\alpha+i)^{p}-(\alpha+i)+a=\alpha^{p}-\alpha+a+i^{p}-i=0,
$$

since $\alpha^{p}-\alpha+a=0$ and by Fermat's little theorem $i^{p}-i=0$ for $i \in\{0,1, \ldots, p-1\}$. Thus $\alpha, \alpha+1, \alpha+2, \ldots \alpha+(p-1)$ are zeroes of $g(x)=x^{p}-x+a$
(b) Prove that in $E[x]$ we have

$$
x^{p}-x+a=(x-\alpha)(x-\alpha+1) \ldots(x-\alpha+p-1) .
$$

Proof. By using generalized factor theorem $h(x):=(x-\alpha)(x-\alpha+1) \ldots(x-\alpha+p-1)$ divides $g(x)=x^{p}-x+a$ since $\alpha, \alpha+1, \alpha+2, \ldots \alpha+(p-1)$ are distinct zeros of $g(x)$. Observe that $\operatorname{deg} h(x)=\operatorname{deg} g(x)$, thus $g(x)=c h(x)$, and since leading term of both $g(x)$ and $h(x)$ are 1, we get $g(x)=h(x)$ as required.
(c) Suppose $f(x)$ is a (monic) divisor of $g(x)=x^{p}-x+a$. Argue why $f(x)=(x-\alpha-$ $\left.i_{1}\right) \ldots\left(x-\alpha-i_{d}\right)$ for some $i_{1}, \ldots i_{d} \in \mathbb{Z}_{p}$.

Proof. We can write $g(x)=f(x) t(r)$ for some polynomial $t(x) \in E[x]$. Since $g(\alpha+i)=0$ for $i \in\{0,1, \ldots, p-1\}$, for each i, either $f(\alpha+i)=0$ or $t(\alpha+i)=0$. Let $S=\left\{i \mathbb{Z}_{p}\right.$: $f(\alpha+i)=0\}$ and $T=\left\{i \in \mathbb{Z}_{p}: t(\alpha+i)=0\right\}$, thus $S \cup T=\{0,1, \ldots, p-1\}$.
By generalized factor theorem,

$$
\begin{aligned}
& q_{1}(x) \prod_{i \in S}(x-\alpha-i)=f(x) \\
& q_{2}(x) \prod_{i \in T}(x-\alpha-i)=t(x)
\end{aligned}
$$

and we have $\operatorname{deg} f(x)=|S|+\operatorname{deg} q_{1}(x)$ and $\operatorname{deg} t(x)=|T| \mid \operatorname{deg} q_{2}(x)$. We also know $\operatorname{deg} f(x)+\operatorname{deg} t(x)=\operatorname{deg} g(x)=p$, we get $|S|+|T|+\operatorname{deg} q_{1}(x)+\operatorname{deg} q_{2}(x)=p=|S \cup T|$ which is only possible when $\operatorname{deg} q_{i}=0$ for $i=1,2$ and $S \cap T=\{ \}$. In particular we get $f(x)=\prod_{i \in S}(x-\alpha-i)$ as required.
(d) Show that coefficient of x^{d-1} of f is $-\left(d \alpha+i_{1}+\cdots+i_{d}\right)$.

Proof. We have $f(x)=\left(x-\alpha-i_{1}\right) \ldots\left(x-\alpha-i_{d}\right)$, simply by expanding the polynomial we see that coefficient of x^{d-1} is $-\left(\alpha+i_{1}\right)-\cdots-\left(\alpha+i_{d}\right)=-\left(d \alpha+i_{1}+\cdots+i_{d}\right)$.
(e) Suppose $f(x) \in \mathbb{Z}_{p}[x]$ is a divisor of $x^{p}-x+a$ and $0<\operatorname{deg} f<p$. Prove that $\alpha \in \mathbb{Z}_{p}$.

Proof. Note that $f(x) \in \mathbb{Z}_{p}[x]$ implies that coefficient of x^{d-1} is in \mathbb{Z}_{p}. Thus by part (b), $d \alpha+i_{1}+\cdots+i_{d} \in \mathbb{Z}_{p}$ which implies $\alpha \in \mathbb{Z}_{p}$ since $i_{1}, \ldots, i_{d} \in \mathbb{Z}_{p}$ and $0 \neq d \in \mathbb{Z}_{p}$ (we have used that fact that \mathbb{Z}_{p} is a field).
(f) Use previous part and Fermat's little theorem to get a contradiction, and deduce that $x^{p}-x+a$ is irreducible.

Proof. Suppose $f(x)$ is a divisor of $x^{p}-x+a$ such that $0<\operatorname{deg} f<p$, then by previous part $\alpha \in \mathbb{Z}_{p}$. By Fermat's theorem, we know $\alpha^{p}-\alpha=0$ which is a contradiction because α is a zero of $x^{p}-x+a$ (that is $\alpha^{-} \alpha+a=0$) and $a \in \mathbb{Z}^{\times}$.

