Math 103B - HW-4 (solution)

TA : Shubham Sinha

March 10, 2020

Problem set

1. 1. Suppose E is a finite integral domain of characteristic p. Let $F_p : E \to E, F_p(x) := x^p$. Prove that F_p is a ring isomorphism. (Long ago in class we proved that F_p is a ring homomorphism in any ring of characteristic p when p is prime. Go over your notes and rewrite that part of the argument as well. Notice that you have to argue why p is prime and why F_p is a bijection.)

Proof. Since E is finite ring, characteristic of E cannot be 0 (otherwise $\{1, 1+1, ...\}$ is infinite set in E). Moreover, since E is a domain, we have seen in class that characteristic p has to be a prime number.

Note that using binomial theorem

$$F_p(x+y) = (x+y)^p = \sum_{i=0}^p \binom{p}{i} x^i = x^p + y^p = F_p(x) + F_p(y)$$

, since p divides $\binom{p}{r}$ for 0 < r < p. Moreover, since E is commutative $F_p(xy) = x^p y^p = F_p(x)$ for all $x, y \in E$. Thus F_p is a ring homomorphism.

Note that $Ker(F_p) \subset E$ is a ideal since F_p is a ring homomorphism. However the only possible ideals in a field E (finite integral domain is a field) are $\{0\}$ or E. Since $F_p(1) = 1$, we get that $Ker(F_p) = \{0\}$ thus F_p is injective. Since E is finite, F_p is bijective hence an isomorphism.

2. (a) Prove that the minimal polynomial of $\alpha = \sqrt{1 + \sqrt{3}}$ is $f(x) = x^4 - 2x^2 - 2$.

Proof. Note that $\alpha^2 - 1 = \sqrt{3}$, hence $(\alpha^2 - 1)^2 = 3$ which simplifies to $f(\alpha) = 0$. To show that f(x) is the minimal polynomial satisfying $f(\alpha) = 0$, we need to show f(x) is irreducible. We obtain this by applying Eisenstein's criterion for prime p = 2.

(b) Prove that $\mathbb{Q}[\alpha] := \{c_0 + \cdots + c_3 \alpha^3 | c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$ is a subring of \mathbb{C} .

Proof. It is enough to show that $\mathbb{Q}[\alpha]$ is closed under addition and multiplication. For any polynomial $g(x) \in \mathbb{Q}[x]$, by euclidean algorithm for polynomials there exists polynomials $q(x), r(x) \in \mathbb{Q}[x]$ such that g(x) = q(x)f(x) + r(x) where $\deg(f) > \deg(r)$. We apply it in our situation by noting that any polynomial in α (call it $g(\alpha)$), $g(\alpha) = f(\alpha)q(\alpha) + r(\alpha) = r(\alpha)$ since $f(\alpha) = 0$, where degree of r(x) is less than 3. That is to say $g(\alpha) = r(\alpha) = a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 \in \mathbb{Q}[\alpha]$.

Multiplication or addition in $\mathbb{Q}[\alpha]$ is a polynomial in α hence by above argument it can be represented by elements in \mathbb{Q} .

(c) Prove that $\mathbb{Q}[x]/\langle f(x)\rangle \cong \mathbb{Q}[\alpha]$.

Proof. Let $\phi_{\alpha} : \mathbb{Q}[x] \to \mathbb{C}$ be the evaluation homomorphism which takes any polynomial g(x) to $g(\alpha) \in \mathbb{C}$. Observe that from previous problem we note that image of ϕ_{α} is $\mathbb{Q}[\alpha]$. Moreover we know that $Ker(\phi_{\alpha}) = \langle f(x) \rangle$, so the required result follows from the first isomorphism theorem.

(d) Write α^{-1} in term of $c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3$ with $c_i \in \mathbb{Q}$.

Proof. Observe that $f(\alpha) = \alpha^4 - 2\alpha^2 - 2 = 0$, thus by dividing α , we obtain $\alpha^3 - 2\alpha - \frac{2}{\alpha} = 0$ which implies

$$\alpha^{-1} = \frac{\alpha^3 - 2\alpha}{2}.$$

(e) Write $(1 + \alpha)^{-1}$ in the form $c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3$ with $c_i \in \mathbb{Q}$.

Answer. Let $g(y) = f(y-1) = (y-1)^4 - 2(y-1)^2 - 2 = y^4 - 4y^3 + 4y^2 - 3$, and note that $g(\alpha + 1) = f(\alpha) = 0$. Thus by the same procedure as before, $y^3 - 4y^2 + 4y - \frac{3}{y} = 0$ for $y = \alpha + 1$, which implies

$$(\alpha+1)^{-1} = \frac{(\alpha+1)^3 - 4(\alpha+1)^2 + 4(\alpha+1)}{3}$$

3. Suppose E is a finite field that contains Z₃ as a subring. Suppose there is α ∈ E such that α³ - α + 1 = 0. Let φ_α : Z₃[x] → E be the map of evaluation at α.
(a) Prove that ker φ_α = ⟨x³ - x + 1⟩.

Proof. Note that \mathbb{Z}_3 is a field hence $\mathbb{Z}_3[x]$ is a principle ideal domain (PID) and ϕ_{α} is a homomorphism. Thus ker $\phi_{\alpha} = \langle g(x) \rangle$ for some $g(x) \in \mathbb{Z}_3[x]$.

Let $f(x) := x^3 - x + 1$. Note that f(x) is irreducible since it degree 3 polynomial with no zeros. Moreover $\phi_{\alpha}(f(x)) = f(\alpha) = 0$, thus $f(x) \in \ker \phi_{\alpha} = \langle g(x) \rangle$, which implies f(x) = g(x)h(x). Since f(x) is irreducible and g(x) is not a constant polynomial, h(x)is a (non-zero) constant as polynomial. Hence $\ker \phi_{\alpha} = \langle f(x) \rangle$. \Box (b) Prove that $\text{Im}\phi_{\alpha} = \{c_0 + c_1\alpha + c_2\alpha^2 | c_0, c_1, c_2 \in \mathbb{Z}_3\}.$

Proof. Note that image of ϕ_{α} consists of all polynomials in α (i.e $g(\alpha) \in E$ where $g(x) \in \mathbb{Z}_3[x]$). We have seen that euclidean algorithm for polynomials over any field, thus for any polynomial $g(x) \in \mathbb{Z}_3[x]$, there exists polynomials $q(x), r(x) \in \mathbb{Z}_3[x]$ such that g(x) = q(x)f(x) + r(x) where $3 \deg(f) > \deg(r)$. Applying this to our situation, we see that $g(\alpha) = r(\alpha) = c_0 + c_1\alpha + c_2\alpha^2$, where $c_i \in \mathbb{Z}_3$.

(c)Let us denote the image of ϕ_{α} by $\mathbb{Z}_3[\alpha]$. Prove that \mathbb{Z}_3 is a finite field with 27 elements.

Proof. Note that $c_0 + c_1\alpha + c_2\alpha^2 = 0$ implies $c_0 = c_1 = c_2 = 0$ because $f(x) = x^3 - x + 1$ is the minimal polynomial satisfying $f(\alpha) = 0$. Thus $c_0 + c_1\alpha + c_2\alpha^2 = b_0 + b_1\alpha + b_2\alpha^2$ implies $c_i = b_i$ for all *i*. Hence by using part (b) we conclude that $\mathbb{Z}_3[\alpha]$ is in set theoretic bijection with $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ given by $c_0 + c_1\alpha + c_2\alpha^2 \to (c_0, c_1, c_2)$. Thus there are precisely $3^3 = 27$ elements in $\mathbb{Z}_3[\alpha]$.

Note that $\mathbb{Z}_3[\alpha]$ is a subring of the field E (since it is the image of a homomorphism), thus $\mathbb{Z}_3[\alpha]$ is an integral domain. Since any finite integral domain is a field, we conclude $\mathbb{Z}_3[\alpha]$ is a field.

4. Suppose I and J are two ideals of a commutative ring R.
(a) Prove that I ∩ J is an ideal of R.

Proof. Let $a, b \in I \cap J$ and $r \in R$, then $a, b \in I$ and $a, b \in J$. Since I and J are ideals, (a+b), ar are both in I and J, hence $(a+b), ar \in I \cap J$. Thus $I \cap J$ is an ideal. \Box

(b) Let $I + J := \{x + y | x \in I, y \in J\}$. Prove that I + J is an ideal of R.

Proof. Let $a = (x+y), b = (x'+y') \in I+J$ and $r \in R$, then $a+b = (x+x')+(y+y') \in I+J$ and $ar = (xr+yr) \in I+J$. Hence I+J is an ideal.

5. Suppose R is a unital commutative ring and $x_1, \ldots, x_n \in R$. (a) Let $I = Rx_1 + Rx_2 + \cdots + Rx_n = \{r_1x_1 + \cdots + r_nx_n\}$, where $Rx_i = \langle x_i \rangle$. Prove that I is an ideal.

Proof. The proof is nearly same as the proof of part(b) of the previous problem. \Box

(b) Prove that the ideal I is the smallest ideal that contains x_1, \ldots, x_n .

Proof. Note that I contains x_1, \ldots, x_n so we need to show that for any ideal $J \subset R$ containing x_1, \ldots, x_n we have $I \subset J$. Any element $a \in I$ can be written as $a = r_1x_1 + \cdots + r_nx_n$, we need to show that $a \in J$. This follows since $x_i \in J$ and $r_i \in R$, we get $r_ix_i \in J$ and hence $\sum_{i=1}^n r_ix_i = a \in J$ since J is an ideal.

6. Let $I := \langle 2, x \rangle = \{2f(x) + xg(x) : f, g \in \mathbb{Z}[x]\}$. Prove that I is not a principal ideal. Deduce that $\mathbb{Z}[x]$ is not a PID.

Proof. Suppose $I = \langle h(x) \rangle$ for some $h(x) \in \mathbb{Z}[x]$. Note that 2 = h(x)q(x) and x = h(x)r(x) for some $q(x), r(x) \in \mathbb{Z}[x]$ because $2, x \in I$. We use 2 = h(x)q(x) to conclude that deg h(x) = 0 as polynomial, thus h(x) = c where c|2. Moreover since x = h(x)r(x) = cr(x), evaluating this equation at x = 1, we get 1 = cr(1) where $r(1) \in \mathbb{Z}$, thus $c = \pm 1$.

Although since $c \in I$, there exists $f(x), g(x) \in \mathbb{Z}[x]$ such that c = 2f(x) + xg(x). Evaluating this equation at x = 0 we get c = 2f(0) + 0g(0) = 2f(0), since $c = \pm 1$ and $f(0) \in \mathbb{Z}$, we get a contradiction.

7. Suppose E is a finite field that contains Z_p as a subring. Suppose a ∈ Z_p[×]. Suppose there is α ∈ E such that α^p − α + a = 0.
(a) Prove that α + 1, α + 2, ... α + (p − 1) are zeroes of g(x) = x^p − x + a.

Proof. Note that since characteristic of E is p, $(\alpha + \beta)^p = \alpha^p + \beta^p$ for all $\alpha, \beta \in E$. Thus

$$(\alpha + i)^{p} - (\alpha + i) + a = \alpha^{p} - \alpha + a + i^{p} - i = 0,$$

since $\alpha^p - \alpha + a = 0$ and by Fermat's little theorem $i^p - i = 0$ for $i \in \{0, 1, \dots, p-1\}$. Thus $\alpha, \alpha + 1, \alpha + 2, \dots, \alpha + (p-1)$ are zeroes of $g(x) = x^p - x + a$

(b) Prove that in E[x] we have

$$x^p - x + a = (x - \alpha)(x - \alpha + 1)\dots(x - \alpha + p - 1).$$

Proof. By using generalized factor theorem $h(x) := (x - \alpha)(x - \alpha + 1) \dots (x - \alpha + p - 1)$ divides $g(x) = x^p - x + a$ since $\alpha, \alpha + 1, \alpha + 2, \dots \alpha + (p - 1)$ are distinct zeros of g(x). Observe that deg $h(x) = \deg g(x)$, thus g(x) = ch(x), and since leading term of both g(x) and h(x) are 1, we get g(x) = h(x) as required.

(c) Suppose f(x) is a (monic) divisor of $g(x) = x^p - x + a$. Argue why $f(x) = (x - \alpha - i_1) \dots (x - \alpha - i_d)$ for some $i_1, \dots i_d \in \mathbb{Z}_p$.

Proof. We can write g(x) = f(x)t(r) for some polynomial $t(x) \in E[x]$. Since $g(\alpha+i) = 0$ for $i \in \{0, 1, \ldots, p-1\}$, for each i, either $f(\alpha+i) = 0$ or $t(\alpha+i) = 0$. Let $S = \{i\mathbb{Z}_p : f(\alpha+i) = 0\}$ and $T = \{i \in \mathbb{Z}_p : t(\alpha+i) = 0\}$, thus $S \cup T = \{0, 1, \ldots, p-1\}$.

By generalized factor theorem,

$$q_1(x)\prod_{i\in S}(x-\alpha-i) = f(x)$$
$$q_2(x)\prod_{i\in T}(x-\alpha-i) = t(x)$$

and we have deg $f(x) = |S| + \deg q_1(x)$ and deg $t(x) = |T| | \deg q_2(x)$. We also know deg $f(x) + \deg t(x) = \deg g(x) = p$, we get $|S| + |T| + \deg q_1(x) + \deg q_2(x) = p = |S \cup T|$ which is only possible when deg $q_i = 0$ for i = 1, 2 and $S \cap T = \{\}$. In particular we get $f(x) = \prod_{i \in S} (x - \alpha - i)$ as required.

(d) Show that coefficient of x^{d-1} of f is $-(d\alpha + i_1 + \cdots + i_d)$.

Proof. We have $f(x) = (x - \alpha - i_1) \dots (x - \alpha - i_d)$, simply by expanding the polynomial we see that coefficient of x^{d-1} is $-(\alpha + i_1) - \dots - (\alpha + i_d) = -(d\alpha + i_1 + \dots + i_d)$. \Box

(e) Suppose $f(x) \in \mathbb{Z}_p[x]$ is a divisor of $x^p - x + a$ and $0 < \deg f < p$. Prove that $\alpha \in \mathbb{Z}_p$.

Proof. Note that $f(x) \in \mathbb{Z}_p[x]$ implies that coefficient of x^{d-1} is in \mathbb{Z}_p . Thus by part (b), $d\alpha + i_1 + \cdots + i_d \in \mathbb{Z}_p$ which implies $\alpha \in \mathbb{Z}_p$ since $i_1, \ldots, i_d \in \mathbb{Z}_p$ and $0 \neq d \in \mathbb{Z}_p$ (we have used that fact that \mathbb{Z}_p is a field).

(f) Use previous part and Fermat's little theorem to get a contradiction, and deduce that $x^p - x + a$ is irreducible.

Proof. Suppose f(x) is a divisor of $x^p - x + a$ such that $0 < \deg f < p$, then by previous part $\alpha \in \mathbb{Z}_p$. By Fermat's theorem, we know $\alpha^p - \alpha = 0$ which is a contradiction because α is a zero of $x^p - x + a$ (that is $\alpha^- \alpha + a = 0$) and $a \in \mathbb{Z}^{\times}$.