Third problem set

1. In class we proved that, for any $a \in \mathbb{Z}_p$, we have a = a.

(where p is prime). Use this result to show

in $\mathbb{Z}_p[x]$. Use this result to deduce (p-1)! = -1 in \mathbb{Z}_p . (<u>Hint</u>. Think about zeros of x-x in \mathbb{Z}_p .)

- 2. @ Show that $\mathbb{Z}[\omega] = \frac{2}{3}a + b\omega \mid a,b \in \mathbb{Z}\frac{2}{3}$ is a subring of \mathbb{C} where $\omega = -\frac{1+\sqrt{-3}}{2}$
 - 6) Show that the field of fractions of Z [w] is $\mathbb{Q}[\omega] = \{a+b\omega \mid a,b\in \mathbb{Q}\}$.

(<u>Hint</u>. Use $\omega^2 + \omega + 1 = 0$; and compute $(a+b\omega)(a+b\overline{\omega})$ where $\overline{\omega} = \frac{-1-\sqrt{-3}}{2}$. (Notice $\omega + \overline{\omega} = -1$ and $\omega \overline{\omega} = 1$.))

- 3. Find all the primes p such that x+2 is a factor of $x^6-x^4+x^3-x+1$ in $\mathbb{Z}_p[x]$.
- 4. Find a zero of $x^3 2x + 1$ in \mathbb{Z}_5 and express it as a product of a degree 1 and a degree 2 polynomial.
- 5. How many degree 2 and degree 3 polynomials with no zeros in \mathbb{Z}_2 IXI are there?

Third problem set

- 1. Prove that the following polynomials are irreducible in Q[x].

 - (b) $\chi^n = 12$ where $n \in \mathbb{Z}^+$.
 - $\bigcirc \times \frac{5}{10} \times \frac{3}{10} \times \frac{25}{10} \times \frac{2}{10} \times \frac{2}$

Only in this part of the problem you are allowed to use

the following (advance) theorem:

Let p be a prime and $a \in \mathbb{Z}_p \setminus \{0\}$. Then x - x + a is irreducible in $\mathbb{Z}_p[x]$.)

- 2. @ Prove that $f(x)=x^5-3x^3+6x^2+9x-21$ is irreducible
 - in Q[X]. (Hint. Think about a useful criterion!)
 - 6 Let & be a real zero of for Suppose

+ : @[x] → R is the evaluation homomorphism;

that means $\phi(f(x)) = f(x)$. Prove that $\ker \phi_{\alpha} = \langle f_{\alpha}(x) \rangle$.

(Hint. Use the fact that Q[X] is a PID and part@).

Third problem set

- 3. ⓐ Prove that $\{\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \mid a,b \in \mathbb{Q} \}$ is a subring of $M_2(\mathbb{Q})$.
 - (a) Prove that $f: \mathbb{Q}[\sqrt{2}] \longrightarrow \{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{Q} \},$ $f(a+b\sqrt{2}) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$

is a ring isomorphism.