Third problem set

1. In class we proved that, for any $a \in \mathbb{Z}_{p}$, we have $a^{p}=a$. (where p is prime). Use this result to show

$$
x^{P}-x=x(x-1) \cdots \cdots(x-(p-1))
$$

in $\mathbb{Z}_{p}[x]$. Use this result to deduce $(p-1)!=-1$ in \mathbb{Z}_{p}.
(Hint. Think about zeros of $x^{P}-x$ in \mathbb{Z}_{P}.)
2.(a) Show that $\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} where $\omega=\frac{-1+\sqrt{-3}}{2}$
(b) Show that the field of fractions of $\mathbb{Z}[\omega]$ is

$$
\mathbb{Q}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Q}\} .
$$

(Hint. Use $\omega^{2}+\omega+1=0$; and compute $(a+b \omega)(a+b \bar{\omega})$ where $\bar{\omega}=\frac{-1-\sqrt{-3}}{2}$. (Notice $\omega+\bar{\omega}=-1$ and $\omega \bar{\omega}=1$.))
3. Find all the primes p such that $x+2$ is a factor of $x^{6}-x^{4}+x^{3}-x+1$ in $\mathbb{Z}_{p}[x]$.
4. Find a zero of $x^{3}-2 x+1$ in \mathbb{Z}_{5} and express it as a product of a degree 1 and a degree 2 polynomial.
5. How many degree 2 and degree 3 polynomials with no zeros in $\mathbb{Z}_{2}[x]$ are there?

Third problem set
9. Prove that the following polynomials are irreducible in $\mathbb{Q}[x]$.
(a) $x^{3}-3 x^{2}+3 x+4$.
(b) $x^{n}-12$ where $n \in \mathbb{Z}^{+}$.
(c) $x^{5}-10 x^{3}+25 x^{2}-51 x+2017$
(Only in this part of the problem you are allowed to use the following (advance) theorem:

Let p be a prime and $a \in \mathbb{Z}_{p} \backslash\{0\}$. Then $x^{p}-x+a$ is irreducible in $\mathbb{Z}_{p}[x]$.)
2. (a) Prove that $f_{0}(x)=x^{5}-3 x^{3}+6 x^{2}+9 x-21$ is irreducible in $\mathbb{Q}[x]$. (Hint. Think about a useful criterion!)
(b) Let α be a real zero of $f_{0}(x)$. Suppose $\Phi_{\alpha}: \mathbb{Q}[x] \longrightarrow \mathbb{R}$ is the evaluation homomorphism; that means $\phi_{\alpha}(f(x))=f(\alpha)$. Prove that ger $\phi_{\alpha}=\left\langle f_{0}(x)\right\rangle$.
(Hint. Use the fact that Q[x] is a PID and part@.).

Third problem set
3. (a) Prove that $\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}$ is a subring of $M_{2}(\mathbb{Q})$.
(b) Prove that $f: \mathbb{Q}[\sqrt{2}] \rightarrow\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}$,

$$
f(a+b \sqrt{2})=\left[\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right]
$$

is a ring isomorphism.

