Math 103B - HW-2 (solution)

TA : Shubham Sinha

February 24, 2020

All problems are from A first course in Abstract Algebra by John B. Fraleigh.

Problem set

1 Show that $x^p - x = x(x-1) \dots (x-(p-1))$ in $\mathbb{Z}_p[x]$. Use this to prove that (p-1)! = -1 in \mathbb{Z}_p .

Proof. We know (by Fermat's theorem) that for any $a \in \mathbb{Z}_p$, $a^p - a = 0$. Since \mathbb{Z}_p is a field, by factor theorem, $x^p - x = x(x-1) \dots (x-(p-1))g(x)$. Thus by looking at degree and leading coefficient, we see that g(x) = 1.

Take x = p in the identity (obtained by canceling x) $x^{p-1} - 1 = (x - 1) \dots (x - (p - 1))$. We thus obtain obtain $-1 = p^{p-1} - 1 = (p - 1)!$ in \mathbb{Z}_p .

2 Let $w = \frac{-1+\sqrt{-3}}{2}$ be third root of unity. Show that $\mathbb{Z}[w]$ is a subring of \mathbb{C} . Show that the field of fraction of $\mathbb{Z}[w]$ is $\mathbb{Q}[w]$.

Proof. Let a + bw and c + dw be elements in $\mathbb{Z}[w]$, we need to show that their sum and product is also in $\mathbb{Z}[w]$. Note that $w^3 = 1$ and $w^2 + w + 1 = 0$. Thus $(a + bw) + (c + dw) = (a + b) + (c + d)w \in \mathbb{Z}[w]$ and $(a + bw)(c + dw) = ac + (ad + bc)w + bdw^2 = ac + (ad + bc)w + bd(-1 - w) = (ac - bd) + (ad + bc - bd)w \in \mathbb{Z}[w]$.

Note that any element $(a+bw) \in \mathbb{Q}[w]$ can be written as (r+sw)/n where $(r+sw) \in \mathbb{Z}[w]$ and $n \in \mathbb{Z}$. Thus it suffices to show that $\mathbb{Q}[w]$ is a field. It is clearly a ring (by argument above), we need to show that $(a+bw)^{-1}$ is an element in $\mathbb{Q}[w]$. It follows from noting that the complex conjugate $\bar{w} = w^2$ in \mathbb{C} and the following calculation :

$$\frac{1}{a+bw} = \frac{(a+bw^2)}{(a+bw)(a+bw^2)} = \frac{(a-b)-bw}{a^2+b^2-ab} \in \mathbb{Q}[z]$$

Moreover note that $a^2 + b^2 - ab \neq 0$ whenever $(a + bw) \neq 0$.

3 Find all primes p such that x + 2 is a factor of $f(x) = x^6 - x^4 + x^3 - x + 1$ in $\mathbb{Z}_p[x]$.

Answer. By factor theorem, x + 2 is a factor of f(x) (where f(x) is a polynomial over a field) if and only if f(-2) = 0. Note that f(-2) = 43 which is prime. So f(x) = 43 = 0 in \mathbb{Z}_p only when p = 43.

4 Factor $f(x) = x^3 - 2x + 1$ in $\mathbb{Z}_5[x]$ as a degree 1 and degree two polynomials.

Answer. Note that f(1) = 0, thus x - 1 is a factor. We have $f(x) = (x - 1)(x^2 + x - 1)$ in $\mathbb{Z}_5[x]$.

5 How many degree 2 and degree 3 polynomials with no zeros are there in $\mathbb{Z}_2[x]$?

Answer. Note that in \mathbb{Z}_2 , we have $y \neq 0 \implies y = 1$. Let $f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ be a degree three polynomial in $\mathbb{Z}_2[x]$. The given conditions implies : $a_3 \neq 0$ (since f(x)has degree 3), $f(0) = a_0 \neq 0$ and $f(1) = a_3 + a_2 + a_1 + a_0 \neq 0$. Thus in \mathbb{Z}_2 , these conditions imply $a_0 = 1$, $a_3 = 1$ and $a_1 + a_2 = 1$. Thus all possible solutions of (a_1, a_2) are $\{(1,0), (0,1)\}$. Thus there are **two** such degree 3 polynomial.

Similar argument can be used to show that a degree two polynomial $f(x) = a_2x^2 + a_1x + a_0$ has no zeros if and only if $a_2 = a_1 = a_0 = 1$. Thus there is only **one** such polynomial.

6 Prove that the following polynomials are irreducible in Q[x]:
(a) f(x) = x³ - 3x² + 3x + 4

Proof. Note that since it is a degree 3 polynomial, it is irreducible if and only if f(x) has no zeros. Using Gauss' lemma we need to show irreducibility in $\mathbb{Z}[x]$. Note that any integer root a of f(x) must satisfy a|4. Checking all (positive and negative) factors of 4 we conclude that f(x) has no integer root, hence it is irreducible.

(b)
$$f(x) = x^n + 12$$

Proof. Use Eisenstein's criterion with p = 3. The conditions are satisfied since f(x) is, $3|12, 3^2 / 12$ an rest of the coefficients are 0.

(c) $f(x) = x^5 - 10x^3 + 25x^2 - 51x + 2017$

Proof. Reducing f(x) modulo p = 5, we get $\overline{f}(x) = x^5 - x + 2$ which is known to be irreducible. Hence f(x) is irreducible in $\mathbb{Z}[x]$.

7 (a) Prove that $f(x) = x^5 - 3x^3 + 6x^2 + 9x - 21$ is irreducible in $\mathbb{Q}[x]$.

Proof. It follows from Eisenstein's criterion for prime p = 3, since 3 divides all the coefficients other that of x^5 , and $3^2 \not/21$.

(b) Let α be a real root of f(x) in \mathbb{R} . Suppose $\phi_{\alpha} : \mathbb{Q}[x] \to \mathbb{R}$ be the evaluation homomorphism. Prove that $\ker(\phi_{\alpha}) = \langle f(x) \rangle$.

Proof. We know that ker of a ring homomorphism is always an ideal. Moreover, we know that all ideal in $\mathbb{Q}[x]$ are principle (i.e it is of the form $\langle g(x) \rangle$). Thus ker $(\phi_{\alpha}) = \langle g(x) \rangle$ for some polynomial g.

Since $\phi_{\alpha}(f(x)) = f(\alpha) = 0$, we see that $f \in \ker = \langle g(x) \rangle$. We conclude that f(x) = g(x)h(x) for some polynomial h(x). Since f is irreducible and g(x) is not constant (since $g(\alpha) = 0$), we conclude that h(x) is constant. Thus $\langle f(x) \rangle = \langle g(x) \rangle = \ker(\phi_{\alpha})$. \Box

8 (a) Show that $A = \{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} : a, b \in \mathbb{Q} \}$ is a subring of $M_2(\mathbb{Q})$.

Proof. It is clearly closed under matrix addition. We will show that it is closed under multiplication.

$$\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \times \begin{bmatrix} c & 2d \\ d & c \end{bmatrix} = \begin{bmatrix} ac+2bd & 2(ad+bc) \\ (ad+bc) & (ac+2bd) \end{bmatrix} \in A$$

(b) Prove that $f : \mathbb{Q}[\sqrt{2}] \to A$ given by $f(a + b\sqrt{2}) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ is a ring isomorphism.

Proof. Note that $(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2}$, which matches with the corresponding matrix multiplication, i.e $f((a+b\sqrt{2})(c+d\sqrt{2})) = f((a+b\sqrt{2})) \times f((c+d\sqrt{2}))$. It is easy to see that $f((a+b\sqrt{2}) + (c+d\sqrt{2})) = f((a+b\sqrt{2})) + f((c+d\sqrt{2}))$. Hence f is a homomorphism. It is bijective since $\phi : A \to \mathbb{Q}[\sqrt{2}]$ given by $\phi(\begin{bmatrix} a & 2b \\ b & a \end{bmatrix}) \to (a+\sqrt{2}b)$ is the inverse map of f.

Chapter 22

17 Use Fermat's theorem to find zeros in \mathbb{Z}_5 of $f(x) = 2x^{219} + 3^{74} + 2x^{57} + 3x^{44}$.

Answer. By Fermat's theorem, $a^5 \equiv a$ for $a \in \mathbb{Z}_5$. Note that $a^4 \equiv 1$ when $a \neq 0$ in \mathbb{Z}_5 . Observe that f(0) = 0, hence 0 is a zero of f(x). Let $0 \neq a \in \mathbb{Z}_5$ be a root of f(x), then $0 = f(a) = 2a^{219} + 3a^{74} + 2a^{57} + 3a^{44} = 2a^3 + 3a^2 + 2a + 3 = (2a + 3)(a^2 + 1) = (2a + 3)(a - 2)(a - 3)$. Here 1 is the only root of (2a + 3) = 0. Note that since \mathbb{Z}_5 is a field, the above equation implies $a \in \{1, 2, 3\}$. The set of zeros is $\{0, 1, 2, 3\}$.

Chapter 23

34 Show that for p a prime, the polynomial $x^p + a$ in $\mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$.

Proof. By Fermat's theorem, $(-a)^p = (-a)$ in \mathbb{Z}_p , thus x = (-a) is a zero of the polynomial $x^p + a$. Hence it can not be irreducible for any a.

37 (c) Show that $f(x) = x^3 + 17x + 36$ is irreducible in $\mathbb{Q}[x]$.

Proof. Reducing the polynomial mod p = 5, we get $\bar{f}(x) = x^3 + 2x + 1 \in \mathbb{Z}_5[x]$. It is enough to shoe that \bar{f} is irreducible in $\mathbb{Z}_5[x]$. Since degree of polynomial is 3, it is enough to show that $\bar{f}(x)$ does not have a root.

So we evaluate and see $\bar{f}(0) = 1, \bar{f}(1) = 4, \bar{f}(2) = 3, \bar{f}(3) = 4, \bar{f}(4) = 3$, hence \bar{f} is irreducible in $\mathbb{Z}_5[x]$ which implies f(x) is irreducible in $\mathbb{Z}[x]$ (and by Gauss' lemma in $\mathbb{Q}[x]$).