Math 103B - HW-2 (solution)

TA : Shubham Sinha
February 24, 2020

All problems are from A first course in Abstract Algebra by John B. Fraleigh.

Problem set

1 Show that ¥ —z = z(z—1)...(x—(p—1)) in Z,[z]. Use this to prove that (p—1)! = —1
in Z,.

Proof. We know (by Fermat’s theorem) that for any a € Z,, a?» —a = 0. Since Z, is
a field, by factor theorem, 2¥ —x = z(x — 1)...(x — (p — 1))g(z). Thus by looking at
degree and leading coefficient, we see that g(z) = 1.

Take x = p in the identity (obtained by canceling z) P! —1=(z —1)...(x — (p—1).
We thus obtain obtain —1 =pP~' —1 = (p —1)! in Z,. O

2 Let w = % be third root of unity. Show that Z[w] is a subring of C. Show that
the field of fraction of Z[w] is Q[w].

Proof. Let a+ bw and ¢+ dw be elements in Z[w], we need to show that their sum and
product is also in Z[w]. Note that w® = 1 and w? + w+ 1 = 0. Thus (a + bw) + (c +
dw) = (a+b) + (c+ d)w € Z[w] and (a + bw)(c + dw) = ac + (ad + be)w + bdw?* =
ac+ (ad + be)w + bd(—1 — w) = (ac — bd) + (ad + be — bd)w € Z[w).

Note that any element(a+bw) € Q[w] can be written as (r+sw)/n where (r+sw) € Z[w|
and n € Z. Thus it suffices to show that Q[w] is a field. It is clearly a ring (by argument
above), we need to show that (a + bw)™! is an element in Q[w]. It follows from noting
that the complex conjugate w = w? in C and the following calculation :

1 (a + bw?) (a—0b) —bw

a+ bw - (a—{—bw)(a+bw2) = a2+ b2 —ab EQ[Z]

Moreover note that a* + b* — ab # 0 whenever (a + bw) # 0. O
3 Find all primes p such that z + 2 is a factor of f(z) =% —2* +2® —z + 1 in Z,[z].
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Answer. By factor theorem, = + 2 is a factor of f(z) (where f(x) is a polynomial over a
field) if and only if f(—2) = 0. Note that f(—2) = 43 which is prime. So f(z) =43 =0
in Z, only when p = 43. [

Factor f(z) = 2® — 2z + 1 in Zs[x] as a degree 1 and degree two polynomials.

Answer. Note that f(1) =0, thus z — 1 is a factor. We have f(z) = (z — 1)(2* + 2 — 1)
in Zs[z]. O

How many degree 2 and degree 3 polynomials with no zeros are there in Zs|x]?

Answer. Note that in Zy, we have y #0 = y = 1. Let f(z) = a3z® + agz? + 17 + ag
be a degree three polynomial in Zs[z]. The given conditions implies : az # 0 (since f(z)
has degree 3), f(0) = ap # 0 and f(1) = a3+ as + a1 + a9 # 0. Thus in Z,, these
conditions imply ag = 1, ag = 1 and a; + ay = 1. Thus all possible solutions of (a;, as)
are {(1,0),(0,1)}. Thus there are two such degree 3 polynomial.

Similar argument can be used to show that a degree two polynomial f(z) = axz? +
a1x + ag has no zeros if and only if ay = a3 = a9 = 1. Thus there is only one such
polynomial. O

Prove that the following polynomials are irreducible in Q[z]:
(a) f(x) =2® — 32 + 3z + 4

Proof. Note that since it is a degree 3 polynomial, it is irreducible if and only if f(x)
has no zeros. Using Gauss’ lemma we need to show irreducibility in Z[z]. Note that any
integer root a of f(x) must satisfy a|4. Checking all (positive and negative) factors of 4
we conclude that f(x) has no integer root, hence it is irreducible. ]

(b) f(x) =2+ 12

Proof. Use Eisenstein’s criterion with p = 3. The conditions are satisfied since f(x) is ,
3]12,, 3% J12 an rest of the coefficients are 0. O

(¢) f(z) = 2° — 102% + 252% — 51z + 2017

Proof. Reducing f(x) modulo p = 5, we get f(r) = 2° — 2 + 2 which is known to be
irreducible. Hence f(x) is irreducible in Z[z]. O

(a) Prove that f(z) = 2% — 32® 4+ 62% + 92 — 21 is irreducible in Q|z].

Proof. 1t follows from Eisenstein’s criterion for prime p = 3, since 3 divides all the
coefficients other that that of 2%, and 3? J21. O



(b) Let a be a real root of f(x) in R. Suppose ¢, : Q[z] — R be the evaluation
homomorphism. Prove that ker(¢,) = (f(x)).

Proof. We know that ker of a ring homomorphism is always an ideal. Moreover, we know
that all ideal in Q[x] are principle (i.e it is of the form (g(x))). Thus ker(¢,) = (g(z))
for some polynomial g.

Since ¢o(f(z)) = f(a) = 0, we see that f € ker = (g(x)). We conclude that f(z) =
g(x)h(z) for some polynomial h(z). Since f is irreducible and g(x) is not constant (since
g(a) = 0), we conclude that h(z) is constant. Thus (f(z)) = (g(x)) = ker(¢q). O

a 2b

8 (a) Show that A = { {b .

} ca,b € Q} is a subring of M,(Q).

Proof. Tt is clearly closed under matrix addition. We will show that it is closed under
multiplication.

{a 26} . Lci Qj} B [ac+2bd 2(ad+bc)] iy

b a ~ |(ad +bc) (ac+ 2bd)
[

(b) Prove that f: Q[v2] — A given by f(a + bv/2) = [Z

zb] e .
, | isaring isomorphism.
Proof. Note that (a+0bv/2)(c+dv/?2) = (ac+2bd) + (ad+bc)v/2, which matches with the

corresponding matrix multiplication, i.e f((a+bv2)(c+dv?2)) = f((a+bv2)) x f((c+

dv/2)). Tt is easy to see that f((a +bv2) + (c+ dv2)) = f((a + bV2)) + f((c + dV/2)).

Hence f is a homomorphism. It is bijective since ¢ : A — Q[v/2] given by &( [Z 2ab ) —

(a +/2b) is the inverse map of f. O

Chapter 22
17 Use Fermat’s theorem to find zeros in Zs of f(z) = 22%1% + 3™ + 2257 + 3244,

Answer. By Fermat’s theorem, a® = a for a € Zs. Note that a* = 1 when a # 0 in Zs.

Observe that f(0) = 0, hence 0 is a zero of f(x). Let 0 # a € Zs5 be a root of f(x),
then 0 = f(a) = 2a®" + 3a™ + 2a°" + 3a™ = 2a® + 3a®> + 2a +3 = (2a + 3)(a®* + 1) =
(2a + 3)(a — 2)(a — 3). Here 1 is the only root of (2a + 3) = 0. Note that since Zj is a
field, the above equation implies a € {1,2,3}. The set of zeros is {0, 1,2, 3}. ]
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Show that for p a prime, the polynomial 2* +a in Z,[x] is not irreducible for any a € Z,.
Proof. By Fermat’s theorem, (—a)? = (—a) in Z,, thus © = (—a) is a zero of the
polynomial x? + a. Hence it can not be irreducible for any a. O]
(c) Show that f(z) = 2® + 17z + 36 is irreducible in Q[z].

Proof. Reducing the polynomial mod p = 5, we get f(z) = 2° + 2z + 1 € Zslx]. It
is enough to shoe that f is irreducible in Zs[z]. Since degree of polynomial is 3, it is
enough to show that f(z) does not have a root.
So we evaluate and see f(0) = 1, f(1) = 4, f(2) = 3, f(3) = 4, f(4) = 3, hence f is
irreducible in Zs[z] which implies f(z) is irreducible in Z[z] (and by Gauss’ lemma in
Q[]).
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