Math 103B - HW-2 (solution)

TA : Shubham Sinha

February 24, 2020

All problems are from A first course in Abstract Algebra by John B. Fraleigh.

Problem set

1 Show that $x^{p}-x=x(x-1) \ldots(x-(p-1))$ in $\mathbb{Z}_{p}[x]$. Use this to prove that $(p-1)!=-1$ in \mathbb{Z}_{p}.

Proof. We know (by Fermat's theorem) that for any $a \in \mathbb{Z}_{p}, a^{p}-a=0$. Since \mathbb{Z}_{p} is a field, by factor theorem, $x^{p}-x=x(x-1) \ldots(x-(p-1)) g(x)$. Thus by looking at degree and leading coefficient, we see that $g(x)=1$.
Take $x=p$ in the identity (obtained by canceling x) $x^{p-1}-1=(x-1) \ldots(x-(p-1)$. We thus obtain obtain $-1=p^{p-1}-1=(p-1)$! in \mathbb{Z}_{p}.

2 Let $w=\frac{-1+\sqrt{-3}}{2}$ be third root of unity. Show that $\mathbb{Z}[w]$ is a subring of \mathbb{C}. Show that the field of fraction of $\mathbb{Z}[w]$ is $\mathbb{Q}[w]$.

Proof. Let $a+b w$ and $c+d w$ be elements in $\mathbb{Z}[w]$, we need to show that their sum and product is also in $\mathbb{Z}[w]$. Note that $w^{3}=1$ and $w^{2}+w+1=0$. Thus $(a+b w)+(c+$ $d w)=(a+b)+(c+d) w \in \mathbb{Z}[w]$ and $(a+b w)(c+d w)=a c+(a d+b c) w+b d w^{2}=$ $a c+(a d+b c) w+b d(-1-w)=(a c-b d)+(a d+b c-b d) w \in \mathbb{Z}[w]$.
Note that any element $(a+b w) \in \mathbb{Q}[w]$ can be written as $(r+s w) / n$ where $(r+s w) \in \mathbb{Z}[w]$ and $n \in \mathbb{Z}$. Thus it suffices to show that $\mathbb{Q}[w]$ is a field. It is clearly a ring (by argument above), we need to show that $(a+b w)^{-1}$ is an element in $\mathbb{Q}[w]$. It follows from noting that the complex conjugate $\bar{w}=w^{2}$ in \mathbb{C} and the following calculation :

$$
\frac{1}{a+b w}=\frac{\left(a+b w^{2}\right)}{(a+b w)\left(a+b w^{2}\right)}=\frac{(a-b)-b w}{a^{2}+b^{2}-a b} \in \mathbb{Q}[z] .
$$

Moreover note that $a^{2}+b^{2}-a b \neq 0$ whenever $(a+b w) \neq 0$.
3 Find all primes p such that $x+2$ is a factor of $f(x)=x^{6}-x^{4}+x^{3}-x+1$ in $\mathbb{Z}_{p}[x]$.

Answer. By factor theorem, $x+2$ is a factor of $f(x)$ (where $f(x)$ is a polynomial over a field) if and only if $f(-2)=0$. Note that $f(-2)=43$ which is prime. So $f(x)=43=0$ in \mathbb{Z}_{p} only when $p=43$.

4 Factor $f(x)=x^{3}-2 x+1$ in $\mathbb{Z}_{5}[x]$ as a degree 1 and degree two polynomials.
Answer. Note that $f(1)=0$, thus $x-1$ is a factor. We have $f(x)=(x-1)\left(x^{2}+x-1\right)$ in $\mathbb{Z}_{5}[x]$.

5 How many degree 2 and degree 3 polynomials with no zeros are there in $\mathbb{Z}_{2}[x]$?
Answer. Note that in \mathbb{Z}_{2}, we have $y \neq 0 \Longrightarrow y=1$. Let $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a degree three polynomial in $\mathbb{Z}_{2}[x]$. The given conditions implies : $a_{3} \neq 0$ (since $f(x)$ has degree 3), $f(0)=a_{0} \neq 0$ and $f(1)=a_{3}+a_{2}+a_{1}+a_{0} \neq 0$. Thus in \mathbb{Z}_{2}, these conditions imply $a_{0}=1, a_{3}=1$ and $a_{1}+a_{2}=1$. Thus all possible solutions of (a_{1}, a_{2}) are $\{(1,0),(0,1)\}$. Thus there are two such degree 3 polynomial.
Similar argument can be used to show that a degree two polynomial $f(x)=a_{2} x^{2}+$ $a_{1} x+a_{0}$ has no zeros if and only if $a_{2}=a_{1}=a_{0}=1$. Thus there is only one such polynomial.

6 Prove that the following polynomials are irreducible in $\mathbb{Q}[x]$:
(a) $f(x)=x^{3}-3 x^{2}+3 x+4$

Proof. Note that since it is a degree 3 polynomial, it is irreducible if and only if $f(x)$ has no zeros. Using Gauss' lemma we need to show irreducibility in $\mathbb{Z}[x]$. Note that any integer root a of $f(x)$ must satisfy $a \mid 4$. Checking all (positive and negative) factors of 4 we conclude that $f(x)$ has no integer root, hence it is irreducible.
(b) $f(x)=x^{n}+12$

Proof. Use Eisenstein's criterion with $p=3$. The conditions are satisfied since $f(x)$ is, $3 \mid 12,, 3^{2}$ X12 an rest of the coefficients are 0.
(c) $f(x)=x^{5}-10 x^{3}+25 x^{2}-51 x+2017$

Proof. Reducing $f(x)$ modulo $p=5$, we get $\bar{f}(x)=x^{5}-x+2$ which is known to be irreducible. Hence $f(x)$ is irreducible in $\mathbb{Z}[x]$.

7 (a) Prove that $f(x)=x^{5}-3 x^{3}+6 x^{2}+9 x-21$ is irreducible in $\mathbb{Q}[x]$.
Proof. It follows from Eisenstein's criterion for prime $p=3$, since 3 divides all the coefficients other that that of x^{5}, and $3^{2} \times 21$.
(b) Let α be a real root of $f(x)$ in \mathbb{R}. Suppose $\phi_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{R}$ be the evaluation homomorphism. Prove that $\operatorname{ker}\left(\phi_{\alpha}\right)=\langle f(x)\rangle$.

Proof. We know that ker of a ring homomorphism is always an ideal.Moreover, we know that all ideal in $\mathbb{Q}[x]$ are principle (i.e it is of the form $\langle g(x)\rangle)$. Thus $\operatorname{ker}\left(\phi_{\alpha}\right)=\langle g(x\rangle)$ for some polynomial g.
Since $\phi_{\alpha}(f(x))=f(\alpha)=0$, we see that $f \in \operatorname{ker}=\langle g(x)\rangle$. We conclude that $f(x)=$ $g(x) h(x)$ for some polynomial $h(x)$. Since f is irreducible and $g(x)$ is not constant (since $g(\alpha)=0$), we conclude that $h(x)$ is constant. Thus $\langle f(x)\rangle=\langle g(x)\rangle=\operatorname{ker}\left(\phi_{\alpha}\right)$.

8 (a) Show that $A=\left\{\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]: a, b \in \mathbb{Q}\right\}$ is a subring of $M_{2}(\mathbb{Q})$.
Proof. It is clearly closed under matrix addition. We will show that it is closed under multiplication.

$$
\left[\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right] \times\left[\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right]=\left[\begin{array}{ll}
a c+2 b d & 2(a d+b c) \\
(a d+b c) & (a c+2 b d)
\end{array}\right] \in A
$$

(b) Prove that $f: \mathbb{Q}[\sqrt{2}] \rightarrow A$ given by $f(a+b \sqrt{2})=\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]$ is a ring isomorphism.

Proof. Note that $(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}$, which matches with the corresponding matrix multiplication, i.e $f((a+b \sqrt{2})(c+d \sqrt{2}))=f((a+b \sqrt{2})) \times f((c+$ $d \sqrt{2}))$. It is easy to see that $f((a+b \sqrt{2})+(c+d \sqrt{2}))=f((a+b \sqrt{2}))+f((c+d \sqrt{2}))$. Hence f is a homomorphism. It is bijective since $\phi: A \rightarrow \mathbb{Q}[\sqrt{2}]$ given by $\phi\left(\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]\right) \rightarrow$ $(a+\sqrt{2} b)$ is the inverse map of f.

Chapter 22

17 Use Fermat's theorem to find zeros in \mathbb{Z}_{5} of $f(x)=2 x^{219}+3^{74}+2 x^{57}+3 x^{44}$.
Answer. By Fermat's theorem, $a^{5} \equiv a$ for $a \in \mathbb{Z}_{5}$. Note that $a^{4} \equiv 1$ when $a \neq 0$ in \mathbb{Z}_{5}. Observe that $f(0)=0$, hence 0 is a zero of $f(x)$. Let $0 \neq a \in \mathbb{Z}_{5}$ be a root of $f(x)$, then $0=f(a)=2 a^{219}+3 a^{74}+2 a^{57}+3 a^{44}=2 a^{3}+3 a^{2}+2 a+3=(2 a+3)\left(a^{2}+1\right)=$ $(2 a+3)(a-2)(a-3)$. Here 1 is the only root of $(2 a+3)=0$. Note that since \mathbb{Z}_{5} is a field, the above equation implies $a \in\{1,2,3\}$. The set of zeros is $\{0,1,2,3\}$.

Chapter 23

34 Show that for p a prime, the polynomial $x^{p}+a$ in $\mathbb{Z}_{p}[x]$ is not irreducible for any $a \in \mathbb{Z}_{p}$.
Proof. By Fermat's theorem, $(-a)^{p}=(-a)$ in \mathbb{Z}_{p}, thus $x=(-a)$ is a zero of the polynomial $x^{p}+a$. Hence it can not be irreducible for any a.

37 (c) Show that $f(x)=x^{3}+17 x+36$ is irreducible in $\mathbb{Q}[x]$.
Proof. Reducing the polynomial $\bmod p=5$, we get $\bar{f}(x)=x^{3}+2 x+1 \in \mathbb{Z}_{5}[x]$. It is enough to shoe that \bar{f} is irreducible in $\mathbb{Z}_{5}[x]$. Since degree of polynomial is 3 , it is enough to show that $\bar{f}(x)$ does not have a root.
So we evaluate and see $\bar{f}(0)=1, \bar{f}(1)=4, \bar{f}(2)=3, \bar{f}(3)=4, \bar{f}(4)=3$, hence \bar{f} is irreducible in $\mathbb{Z}_{5}[x]$ which implies $f(x)$ is irreducible in $\mathbb{Z}[x]$ (and by Gauss' lemma in $\mathbb{Q}[x])$.

