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All problems are from A first course in Abstract Algebra by John B. Fraleigh.

Problem set

1 Show that xp−x = x(x−1) . . . (x−(p−1)) in Zp[x]. Use this to prove that (p−1)! = −1
in Zp.

Proof. We know (by Fermat’s theorem) that for any a ∈ Zp, ap − a = 0. Since Zp is
a field, by factor theorem, xp − x = x(x − 1) . . . (x − (p − 1))g(x). Thus by looking at
degree and leading coefficient, we see that g(x) = 1.

Take x = p in the identity (obtained by canceling x) xp−1 − 1 = (x− 1) . . . (x− (p− 1).
We thus obtain obtain −1 = pp−1 − 1 = (p− 1)! in Zp.

2 Let w = −1+
√
−3

2
be third root of unity. Show that Z[w] is a subring of C. Show that

the field of fraction of Z[w] is Q[w].

Proof. Let a+ bw and c+ dw be elements in Z[w], we need to show that their sum and
product is also in Z[w]. Note that w3 = 1 and w2 + w + 1 = 0. Thus (a + bw) + (c +
dw) = (a + b) + (c + d)w ∈ Z[w] and (a + bw)(c + dw) = ac + (ad + bc)w + bdw2 =
ac+ (ad+ bc)w + bd(−1− w) = (ac− bd) + (ad+ bc− bd)w ∈ Z[w].

Note that any element(a+bw) ∈ Q[w] can be written as (r+sw)/n where (r+sw) ∈ Z[w]
and n ∈ Z. Thus it suffices to show that Q[w] is a field. It is clearly a ring (by argument
above), we need to show that (a + bw)−1 is an element in Q[w]. It follows from noting
that the complex conjugate w̄ = w2 in C and the following calculation :

1

a+ bw
=

(a+ bw2)

(a+ bw)(a+ bw2)
=

(a− b)− bw
a2 + b2 − ab

∈ Q[z].

Moreover note that a2 + b2 − ab 6= 0 whenever (a+ bw) 6= 0.

3 Find all primes p such that x+ 2 is a factor of f(x) = x6 − x4 + x3 − x+ 1 in Zp[x].
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Answer. By factor theorem, x+ 2 is a factor of f(x) (where f(x) is a polynomial over a
field) if and only if f(−2) = 0. Note that f(−2) = 43 which is prime. So f(x) = 43 = 0
in Zp only when p = 43.

4 Factor f(x) = x3 − 2x+ 1 in Z5[x] as a degree 1 and degree two polynomials.

Answer. Note that f(1) = 0, thus x− 1 is a factor. We have f(x) = (x− 1)(x2 + x− 1)
in Z5[x].

5 How many degree 2 and degree 3 polynomials with no zeros are there in Z2[x]?

Answer. Note that in Z2, we have y 6= 0 =⇒ y = 1. Let f(x) = a3x
3 + a2x

2 + a1x+ a0
be a degree three polynomial in Z2[x]. The given conditions implies : a3 6= 0 (since f(x)
has degree 3), f(0) = a0 6= 0 and f(1) = a3 + a2 + a1 + a0 6= 0. Thus in Z2, these
conditions imply a0 = 1, a3 = 1 and a1 + a2 = 1. Thus all possible solutions of (a1, a2)
are {(1,0),(0,1)}. Thus there are two such degree 3 polynomial.

Similar argument can be used to show that a degree two polynomial f(x) = a2x
2 +

a1x + a0 has no zeros if and only if a2 = a1 = a0 = 1. Thus there is only one such
polynomial.

6 Prove that the following polynomials are irreducible in Q[x]:
(a) f(x) = x3 − 3x2 + 3x+ 4

Proof. Note that since it is a degree 3 polynomial, it is irreducible if and only if f(x)
has no zeros. Using Gauss’ lemma we need to show irreducibility in Z[x]. Note that any
integer root a of f(x) must satisfy a|4. Checking all (positive and negative) factors of 4
we conclude that f(x) has no integer root, hence it is irreducible.

(b) f(x) = xn + 12

Proof. Use Eisenstein’s criterion with p = 3. The conditions are satisfied since f(x) is ,
3|12,, 32 6 |12 an rest of the coefficients are 0.

(c) f(x) = x5 − 10x3 + 25x2 − 51x+ 2017

Proof. Reducing f(x) modulo p = 5, we get f̄(x) = x5 − x + 2 which is known to be
irreducible. Hence f(x) is irreducible in Z[x].

7 (a) Prove that f(x) = x5 − 3x3 + 6x2 + 9x− 21 is irreducible in Q[x].

Proof. It follows from Eisenstein’s criterion for prime p = 3, since 3 divides all the
coefficients other that that of x5, and 32 6 |21.
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(b) Let α be a real root of f(x) in R. Suppose φα : Q[x] → R be the evaluation
homomorphism. Prove that ker(φα) = 〈f(x)〉.

Proof. We know that ker of a ring homomorphism is always an ideal.Moreover, we know
that all ideal in Q[x] are principle (i.e it is of the form 〈g(x)〉). Thus ker(φα) = 〈g(x〉)
for some polynomial g.

Since φα(f(x)) = f(α) = 0, we see that f ∈ ker = 〈g(x)〉. We conclude that f(x) =
g(x)h(x) for some polynomial h(x). Since f is irreducible and g(x) is not constant (since
g(α) = 0), we conclude that h(x) is constant. Thus 〈f(x)〉 = 〈g(x)〉 = ker(φα).

8 (a) Show that A = {
[
a 2b
b a

]
: a, b ∈ Q} is a subring of M2(Q).

Proof. It is clearly closed under matrix addition. We will show that it is closed under
multiplication. [

a 2b
b a

]
×

[
c 2d
d c

]
=

[
ac+ 2bd 2(ad+ bc)
(ad+ bc) (ac+ 2bd)

]
∈ A

(b) Prove that f : Q[
√

2]→ A given by f(a+ b
√

2) =

[
a 2b
b a

]
is a ring isomorphism.

Proof. Note that (a+b
√

2)(c+d
√

2) = (ac+2bd)+(ad+bc)
√

2, which matches with the
corresponding matrix multiplication, i.e f((a+ b

√
2)(c+ d

√
2)) = f((a+ b

√
2))× f((c+

d
√

2)). It is easy to see that f((a+ b
√

2) + (c+ d
√

2)) = f((a+ b
√

2)) + f((c+ d
√

2)).

Hence f is a homomorphism. It is bijective since φ : A→ Q[
√

2] given by φ(

[
a 2b
b a

]
)→

(a+
√

2b) is the inverse map of f .

Chapter 22

17 Use Fermat’s theorem to find zeros in Z5 of f(x) = 2x219 + 374 + 2x57 + 3x44.

Answer. By Fermat’s theorem, a5 ≡ a for a ∈ Z5. Note that a4 ≡ 1 when a 6= 0 in Z5.

Observe that f(0) = 0, hence 0 is a zero of f(x). Let 0 6= a ∈ Z5 be a root of f(x),
then 0 = f(a) = 2a219 + 3a74 + 2a57 + 3a44 = 2a3 + 3a2 + 2a + 3 = (2a + 3)(a2 + 1) =
(2a + 3)(a− 2)(a− 3). Here 1 is the only root of (2a + 3) = 0. Note that since Z5 is a
field, the above equation implies a ∈ {1, 2, 3}. The set of zeros is {0, 1, 2, 3}.
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Chapter 23

34 Show that for p a prime, the polynomial xp+a in Zp[x] is not irreducible for any a ∈ Zp.

Proof. By Fermat’s theorem, (−a)p = (−a) in Zp, thus x = (−a) is a zero of the
polynomial xp + a. Hence it can not be irreducible for any a.

37 (c) Show that f(x) = x3 + 17x+ 36 is irreducible in Q[x].

Proof. Reducing the polynomial mod p = 5, we get f̄(x) = x3 + 2x + 1 ∈ Z5[x]. It
is enough to shoe that f̄ is irreducible in Z5[x]. Since degree of polynomial is 3, it is
enough to show that f̄(x) does not have a root.

So we evaluate and see f̄(0) = 1, f̄(1) = 4, f̄(2) = 3, f̄(3) = 4, f̄(4) = 3, hence f̄ is
irreducible in Z5[x] which implies f(x) is irreducible in Z[x] (and by Gauss’ lemma in
Q[x]).
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