Math 103B - HW-2 (solution)

TA : Shubham Sinha

February 7, 2020

All problems are from A first course in Abstract Algebra by John B. Fraleigh.

Chapter 19

24 Show that an intersection of subdomains of an integral domain D is again a subdomain of D.

Proof. Let A_{i} 's be subdomains of D, where i lies in some indexing set I and $A=\cap A_{i}$. Note that $1 \in A_{i}$ for all $i \in I, 1 \in A$. Moreover A is a subring since for any $a, b \in A$, $a+b$ and $a b$ are in all A_{i} hence in A. Commutativity follows from the commutativity of D, so we are left to show that it does not have zero-divisors. Suppose $a \in A$ is a zero divisor, then there is $b \in A$ such that $a . b=0$. Since $a, b \in D$ this is not possible. Thus A is a subdomain of D.

27 Show that the characteristic of a subdomain of an integral domain D is equal to the characteristic of D.

Proof. Let A be a subdomain of D, then unity $1 \in A$.
If characteristic of D is 0 , then $n \cdot 1:=1+1+\cdots+1$ sum of n ones is not zero, otherwise $n \cdot a=(n \cdot 1) \cdot a=0$. Thus $m \cdot 1 \neq 0$ in A for all $m \in \mathbb{Z}$, which implies char of A is 0 .
If characteristic of D is prime p, then for any $a \in A, p \cdot a=(p \cdot 1) \cdot a=0$, thus p is the characteristic of A.

28 Show that if D is an integral domain, then $A=\{n \cdot 1 \mid n \in \mathbb{Z}\}$ is a subdomain of D contained in every sub domain of D.

Proof. Let p be the characteristic of D. Note that A is closed under addition and multiplication where multiplication induced by D can be observed to be $(n \cdot 1)(m \cdot 1)=$ $(m n \bmod p) \cdot 1$. Thus A is a subring, moreover is contains unity and it is commutative.

Chapter 21

2 Describe the field F of quotients of the integral subdomain $D=\{n+m \sqrt{2}: n, m \in \mathbb{Z}\}$ of \mathbb{R}.

Proof. Let $\mathbb{Q}[\sqrt{2}]=\{r+s \sqrt{2}: r, s \in \mathbb{Q}\}$, we have seen that it is a field contained in \mathbb{R}, since

$$
(r+s \sqrt{2})^{-1}=\frac{r-s \sqrt{2}}{r^{2}-2 s^{2}}
$$

where the denominator is non-zero since 2 is an irrational number.
We claim that field of quotient of D in \mathbb{R} is precisely $\mathbb{Q}[\sqrt{2}]$. This follows since cearly $D \subset \mathbb{Q}[\sqrt{2}]$, and for any element $r+s \sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ there exist an integer N such that $N r$ and $N s$ are integers, thus

$$
r+s \sqrt{2}=\frac{N r+N s \sqrt{2}}{N}
$$

where both the denominator and the numerator is in D.
4 Mark each of the following true or false:
(a). True : By definition.
(b). False : existence of irrational numbers.
(c). True : Because \mathbb{R} is a field
(d). false : since \mathbb{R} is a field strictly contained in \mathbb{C}
(e). True : By universal property there is a $\psi: Q(D) \rightarrow D$ which is injection, since D is a field. Since ψ takes D to D, it sujection, hence isomorphism.
(h). True : By definition.
(i). True : Let F be field of quotients of D, then $D^{\prime} \subset D \subset F$, so by universal property of F^{\prime}, there is an injection $\phi: F^{\prime} \rightarrow F$. So F^{\prime} is isomorphic to the image of F^{\prime} via ϕ which is a subfield of F.
(j). True : Any two field of quotients are isomorphic.

5 Show by example that a field F^{\prime} of quotients of a proper subdomain D^{\prime} of an integral domain D may also be a field F of quotients for D.

Proof. We have plenty of possible solutions, I will state a few :
(i) $D=\mathbb{Q}, D^{\prime}=\mathbb{Z}$, so $F=\mathbb{Q}=F^{\prime}$
(ii) $D=\mathbb{Z}\left[\frac{1}{n}\right], D^{\prime}=\mathbb{Z}$, so $F=\mathbb{Q}=F^{\prime}$ for any positive integer n.
(iii) $D=\mathbb{Z}[i] D^{\prime}=\mathbb{Z}[2 i]$, then $F=\mathbb{Q}[i]=F^{\prime}$

Chapter 22

5 How many polynomial are there of degree ≤ 3 in $\mathbb{Z}_{2}[x]$?
Answer. Any polynomial of degree at most 3 can be written as $F(x)=a_{0}+a_{1} x+a_{2} x^{2}+$ $a_{3} x^{3}$, where $a_{i} \in \mathbb{Z}_{2}$. Since there are 4 variables, where each one can take value 0 or 1 , the total number of possible polynomial equals $2^{4}=16$.

8 Let $F=E=\mathbb{C}$, Compute the indicated evaluation homomorphism $\phi_{i}\left(2 x^{3}-x^{2}+3 x+2\right)$.

Answer. We just have to evaluate the polynomial at $x=i$, so we get

$$
\begin{aligned}
\phi_{i}\left(2 x^{3}-x^{2}+3 x+2\right) & =\left(2 i^{3}-i^{2}+3 i+2\right) \\
& =3+i
\end{aligned}
$$

11 Let $F=E=\mathbb{Z}_{7}$, Compute the indicated evaluation homomorphism $\phi_{4}\left(3 x^{106}+5 x^{99}+\right.$ $\left.2 x^{53}\right)$.

Answer. By Fermat's theorem, $4^{6}=1$ in \mathbb{Z}_{7}, moreover one may realise that $4^{3}=64=1$ in \mathbb{Z}_{7}, thus we get that $4^{106}=4^{1}=4,4^{99}=1$ and $4^{53}=2$ in \mathbb{Z}_{7}. Thus

$$
\phi_{4}\left(3 x^{106}+5 x^{99}+2 x^{53}\right)=3 \times 4+5 \times 1+2 \times 2=0 \in \mathbb{Z}_{7}
$$

25 Let x an indeterminate.
(b) Find the units in $\mathbb{Z}[x]$
(c) Find units in $\mathbb{Z}_{7}[x]$.

Answer. Note that both $D=\mathbb{Z}$ and $D=\mathbb{Z}_{7}$ are integral domain, thus if $f(x)$ and $g(x)$ are polynomials over D of degree n and m respectively, then degree of $f(x) \cdot g(x)$ is $n+m$.

Let $f(x)$ be a unit, then there is $g(x)$ such that $f(x) \cdot g(x)=1$ as polynomial. By the additivity of the degree we conclude that degree of $f(x)$ and $g(x)$ equals 0 . Hence $f(x)=a_{0}$ and $g(x)=b_{0}$ where $a_{0}, b_{0} \in D$. Since $a_{0} \cdot b_{0}=1$, we get that $f(x)=a_{0}$ is a unit in D (considered as a subdomain of $D[x]$).
Thus in part (b) we have $(\mathbb{Z}[x])^{\times}=\mathbb{Z}^{\times}=\{1,-1\}$ and in part (c) we have $\left(\mathbb{Z}_{7}[x]\right)^{\times}=$ $\mathbb{Z}_{7}^{\times}=\{1,2,3,4,5,6\}$ where these constants are considered as polynomials.

