Math 103B - HW-1 (solution)

TA : Shubham Sinha

January 23, 2020

All problems are from A first course in Abstract Algebra by John B. Fraleigh.

Chapter 18

12. Let $R=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ with the usual addition and multiplication.

Answer. We claim that R is a ring, moreover it is a field.
Let a, b, c and d be rational number and $\alpha=a+b \sqrt{2}$ and $\beta=c+d \sqrt{2}$, then the ring operations are
Addition : $\alpha+\beta=(a+c)+(b+d) \sqrt{2}$
Multiplication : $\alpha \cdot \beta=(a c+2 b d)+(a d+b c) \sqrt{2}$.
R is clearly an abelian subgroup of \mathbb{R} under addition, and closed under multiplication. Hence R is a subring of \mathbb{R}, hence R is a commutative ring. Note that $1 \in R$, and $\alpha \cdot 1=1 \cdot \alpha=\alpha$, hence 1 is the unity.
To show that R is a field, we need to show that any non-zero $\alpha=(a+b \sqrt{2}) \in R$ has a multiplicative inverse. Let $\alpha^{-1}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}$, we note that it is well defined (i.e $a^{2}-2 b^{2} \neq 0$), otherwise $a=b \sqrt{2}$ which implies $a=b=0$ since $\sqrt{2}$ is irrational, but we took $\alpha \neq 0$.
We finish the proof by noting that

$$
\alpha \cdot \alpha^{-1}=(a+b \sqrt{2}) \cdot \frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}=1 .
$$

18. Describe all units in the ring $R=\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$.

Answer. Any element α in R can be written as $\alpha=(m, a, n)$ where $m, n \in \mathbb{Z}$ and $a \in \mathbb{Q}$. Note that $(1,1,1)$ is the unity of R, thus α is a unit if and only if there exists $\beta=(p, x, q)$ such that $\alpha \cdot \beta=(1,1,1)$ which provides us with the equations

$$
\begin{equation*}
m p=a x=n q=1 . \tag{1}
\end{equation*}
$$

Since m, q and n, p are integer pairs we get $n= \pm 1$ and $m= \pm 1$, and since x can be any rational number $a \in \mathbb{Q}^{*}=\mathbb{Q}-\{0\}$. This gives us that necessary conditions.
It is easy see that any $\alpha=(m, a, n) \in\{ \pm 1\} \times \mathbb{Q}^{*} \times\{ \pm 1\}$, we see that $\alpha^{-1}=\left(m, \frac{1}{a}, n\right)$ is the requires inverse.
26. How many homomorphisms are there from $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$?

Answer. Observe that $e_{1}=(1,0,0), e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$ are generator for the ring (or abelian group) $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$. So any homomorphism $\phi: \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is determined by the values $d_{i}=\phi\left(e_{i}\right)$.
Note that $n \cdot(a, b, c)=(n a, n b, n c)$ and $(a, b, c)^{2}=\left(a^{2}, b^{2}, c^{2}\right)$. Using that property of homomorphism we see that $\phi\left(4 e_{i}\right)=4 d_{i}$ (by additivity) and $\phi\left(4 e_{i}\right)=\phi\left(\left(2 e_{i}\right)^{2}\right)=$ $\left(2 d_{i}\right)^{2}=4 d_{i}^{2}$. Thus equating the two equations we get $4 d_{i}^{2}=4 d_{i}$ which has only two solution $d_{i}=0$ or $d_{i}=1$.
Moreover note that $e_{i} \cdot e_{j}=0$ for $i \neq j$, thus $\phi\left(e_{i} \cdot e_{j}\right)=0=d_{i} d_{j}$ for distinct i and j.This implies at most one of the d_{i} 's can be non-zero.
The above arguments leaves us with the following possible solutions: $\left(d_{1}, d_{2}, d_{3}\right)=$ $(0,0,0)$ which is the zero homomorphism, $\left(d_{1}, d_{2}, d_{3}\right)=(1,0,0),\left(d_{1}, d_{2}, d_{3}\right)=(0,1,0)$ and $\left(d_{1}, d_{2}, d_{3}\right)=(0,0,1)$. The latter three gives us valid (projection) homomorphisms $\phi(a, b, c)=a, \phi(a, b, c)=b$ and $\phi(a, b, c)=c$.
Hence there are total of 4 homomorphisms.
28. Find all solution of equation $x^{2}+x-6=0$ in the ring \mathbb{Z}_{14} by factoring the quadratic polynomial.

Answer. Observe that $x^{2}+x-6=(x+3)(x-2)$. In the ring $\mathbb{Z}_{14}, a \cdot b=0$ implies that $14 \mid a b$, where $a, b \in 0,1, \ldots, 13$. If either is zero then $a b=0$, otherwise $a=7$ and $2 \mid b$ or vice versa. Using this description, we write down all the possible solutions :

Case 1: $x+3=0$, then $x=-3$ is a solution.
Case 2: $(x-2)=0$, then $x=2$ is a solution.
Case $3:(x+3)=7$, then $x=4$ and note that $2 \mid(x-2)=2$ thus it is a solution.
Case $4:(x-2)=7$, then $x=9$ and note that $2 \mid(x+3)=12$ thus it is a solution.
38. Prove that $(a-b)(a+b)=a^{2}-b^{2}$ for all a, b ina ring R if and only if R is a commutative.

Proof. (\Longrightarrow) : Using distributive property of ring we see that $(a-b)(a+b)=a(a+$ $b)-b(a+b)=a^{2}+a b-b a-b^{2}$. So by the assumption that $(a-b)(a+b)=a^{2}-b^{2}$, we get $a^{2}+a b-b a-b^{2}=a^{2}-b^{2}$ which indeed imply $a b=b a$ for any $a, b \in R$. Hence R is commutative.
$(\Longleftarrow):$ If R is commutative, for any $a, b \in R$, we have $(a-b)(a+b)=a^{2}+a b-b a-b^{2}=$ $a^{2}-b^{2}$.

Chapter 19

1 Find all solutions to the equation $x^{3}-2 x^{2}-3 x=0$ in \mathbb{Z}_{12}.
Answer. Note that $x^{3}-2 x^{2}-3 x=x(x+1)(x-3)$. Solving this equation modulo 3 and 4 , we get $x \equiv 0,2 \bmod 3$ and $x \equiv 0,1,3 \bmod 4$. Thus using chinese remainder theorem, we readily see that the solutions in \mathbb{Z}_{12} are $\{0,3,5,8,9,11\}$.
17. Mark true or false :
(a) False; since $n \mathbb{Z}$ is a subring of an integral domain (\mathbb{Z}).
(b) True; if any element a of a field is zero divisor (i.e $a b=0$ for some $b \neq 0$), then $1 \cdot b=\left(a^{-1} a\right) b=a^{-1}(a b)=0$ which is contradictory.
(c) False; Note that $\{n, 2 n, 3 n, \ldots\}$ is infinite, thus char of $n \mathbb{Z}$ is 0 .
(d) False; If $\phi: \mathbb{Z} \rightarrow 2 \mathbb{Z}$ is an isomorphism, $4 \phi(1)=\phi(4)=\phi\left(2^{2}\right)=4 \phi(1)^{2}$, thus $\phi(1)$ equals 0 or 1 . Since $1 \notin 2 \mathbb{Z}, \phi(1)=0$ which is contradiction to the assumption that ϕ is an isomorphism.
(e) True; Any ring isomorphic to an integral domain is an integral domian.
(f) True; Let e be the unity for the integral domain. Then consider the set $A=$ $\{e, 2 e, 3 e, \ldots\}$. Note that $n \cdot e \neq 0$ for any n, since otherwise $n \cdot a=n \cdot e \cdot a=0$ for all elements a in the ring. Thus $|A|$ is infinite.
(h) True; Same reason as part (b).

