Lecture 20: Finite fields

Sunday, March 17, 2019

9:57 PM

In the previous lecture we proved that if F is a finite field of order p^d , then $\chi^p - \chi = \prod (\chi - \alpha)$.

This would be our guideline to show the following:

Theorem. For any prime p and any $d \in \mathbb{Z}^+$, there is a finite field of order p^d .

Pf. Let E be a splitting field of x^{p^d} over \mathbb{Z}_p . Let $X := \{ \alpha \in \mathbb{E} \mid \alpha^p - \alpha = 0 \}$.

Claim 1. X is a subfield of E.

14 of claim 1. Closed under addition. Since Zp is a subring of

E, char E=p>0. Hence for any $x,y\in E$, (x+y)=x+y using

binomial expansion. Hence as we have seen earlier in the course

 $(x+y)^p = x^p + y^p$ (using induction on d)

 $\alpha, \beta \in X \Rightarrow (\alpha + \beta) = \alpha + \beta = \alpha + \beta \Rightarrow \alpha + \beta \in X$

Closed under negation $(-1)^P = -1$ if 27p and

 $(-1)^p = 1 = -1$ if p = 2. Hence for $\alpha \in X$ we have

Lecture 20: Finite fields

Sunday, March 17, 2019

$$(-\alpha)^{pd} = (-1)^p \alpha^p = -\alpha \implies -\alpha \in X.$$

Closed under multiplication

$$\alpha, \beta \in X \Rightarrow (\alpha \beta)^{\beta} = \alpha^{\beta} \beta^{\beta} = \alpha \beta \Rightarrow \alpha \beta \in X$$

Multiplicative inverse

$$\alpha \in X \setminus \{0\} \Rightarrow (\alpha^{-1})^{pd} = (\alpha^{pd})^{-1} = \alpha^{-1} \Rightarrow \alpha^{-1} \in X.$$
(in any group G, $(q^{-1})^m = (q^m)^{-1}$.)

Claim 2. X=E.

Pf of Claim 2. Clearly XCE

-
$$X$$
 is a field; $I = 1 \Rightarrow \mathbb{Z}_p \subseteq X$;

. All the zeros of $x^{3d} - x$ are in X

So the smallest field that contains Z_p and zeros of x_-x_-

is a subset of $X \Rightarrow E \subseteq X$. Therefore E = X.

Pf of Claim 3. Since E=X is the set of zeros of

Lecture 20: Finite fields

Sunday, March 17, 2019 1

a polynomial x^p-x of degree p^p in a field E, it has

at most pd elements (Recall. A poly. of degree m

has at most m zeros in an integral domain.) Sc

IEIZ p.

To show equality, it is enough to show x-x does not have multiple zeros; that means there is no α such that $(x-\alpha)^2 \mid x-x$.

We use an idea from calculus: a poly. prx has

a multiple zero at a if and only if

 $p(\alpha) = p'(\alpha) = 0$ cohere p'(x) is the derivative of p(x).

Here we define p'(x) in a formal way:

for $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n \in F[x]$, let

 $p'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \cdots + a_1$

One can check that for f, f2 = F[x] we have

Lecture 20: Finite fields Sunday, March 17, 2019 10:42 PM
Suppose to the contrary that $(x-\alpha)^2 \mid x-x \mid x$ for some
$\alpha \in E$. Then $\chi^{pd} = (\chi - \alpha)^2 q(\chi)$ for some $q(\chi) \in E[\chi]$.
$\Rightarrow p^{d} \chi^{q-1} - 1 = 2(\chi - \alpha) q(\chi) + (\chi - \alpha)^{2} q'(\chi)$
$= -1 = 2(x-\alpha)q(x) + (x-\alpha)^2 q'(x)$ $char(E)=p$
Evaluate at $\alpha \Rightarrow$
$-1 = 2(\alpha - \alpha)q(\alpha) + (\alpha - \alpha)^{2}q'(\alpha) = 0$
\Rightarrow -1=0 which is a contradiction.
Hence $\chi = \chi$ has p distinct zeros $\Rightarrow E \geq p$
as all the zeros of $x^p - x$ are in E . Overall we get
that E is a field of order of.
(In the rest of this lecture we reviewed all the topics

covered in this course.)