Lecture 15: Algebraic numbers and minimal polynomial Sunday, March 17, 2019 2:55 PM We have proved the following : Theorem. Suppose $\alpha \in \mathbb{C}$ is an algebraic number. Then (1) ∃! monic polynomial m(x) ∈ Q[X] st. for france QIXI, france and march 1 france. (2) m(x) is irreducible in Q[x]. (3) $Q [\alpha] :=$ the smallest subring of C that contains Q as a subring and a as an element. ~ QEXJ/(m_cx)> is a field. In this short lecture we prove: (n) Q[x]= 2a,+a,x+...+a, x | a, e Q3 where d=deg max). (b) If proce QIXI is irreducible and par=0, then pcx) = c m (x) for some c e Qx. Pf (a) We have seen that $Q[\alpha] = \{ h(\alpha) \mid h(\alpha) \in Q[\alpha] \}$. For any have QEXI by long division there are que, rane QEXI st. $h(x) = m_{\alpha}(x)q(x) + r(x)$ and $deg r < deg m_{\alpha} = d$.

Lecture 15: Algebraic numbers and minimal polynomials
Sunday, March 17, 2019 3128 PM
Hence
$$h(a_1) = q(a) m_1(a_1) + r(a_2) = r(a_1)$$
. Since deg $r < d_1$,
 $r(x) = a_1 + a_1 x_1 + \cdots + a_{d-1} x^{d-1}$ for some $a_1 \in Q$. Therefore
 $h(a_1) = r(a_1) = a_1 + a_1 a_1 + \cdots + a_{d-1} a^{d-1}$; and claim follows.
(b) Since $p(a_1) = o_1$, $m_1(x_1 \mid p(x_1);$ this means $\exists g(x_1) \in Q[X]$.
 cb : Since $p(a_1) = o_1$, $m_1(x_1 \mid p(x_1);$ this means $\exists g(x_1) \in Q[X]$.
 cb : $p(x_1) = m_1(x_1, g(x_2) \cdot As prop is irreducible in Q[X],$
 $either $m_1(x_1) \in Q^X$ or $g(x_2) \in Q^X$. Since $m_1(x_1)$ is
 $irreducible in Q[X_1], m_1(x_2 \notin Q^X)$. Thus $g(x_1) = c \in Q^X;$
and claim follows. **D**
. The (b) part is an effective way to find the minimal
polynomial of α over Q .
. The (a) part shows that the main reason to have
 $Q[c_1] = \frac{2}{3}a_1 + b_1 \mid a_1b \in Q_3$ or $Q[c_1/2] = \frac{2}{3}a_1 + b_1/2 \mid a_1b \in Q_3$
is that the degree of minimal polynomials $m_1(x) = \chi^2 + 1$
and $m_1(x) = \chi^2 - 2$ is 2. For instance
 $Q[c_1] = \frac{2}{3}a_1 + \frac{1}{3}a_2 \mid a_2, a_1, a_2 \in Q_3$.$