Lecture 13: Ideals; kernels of ring homomorphisms

Thursday, August 24, 2017

11:57 PM

We have seen that ker of is an ideal; next we see that kernel of any ring homomorphism is an ideal. In fact we will see

Let's start by proving ().

Lemma. Suppose $\phi: R \to R'$ is a ring homomorphism. Then $\ker \phi$ is an ideal of R.

<u>Proof</u>: For $r_1, r_2 \in \ker \phi$, $\phi(r_1) = \phi(r_2) = 0$; and so

 $\phi(r_1+r_2) = \phi(r_1) + \phi(r_2) = 0$, which implies $r_1+r_2 \in \ker \phi$.

Now suppose $x \in \ker \varphi$ and reR.

Then $\phi(rx) = \phi(r) \phi(x)$ $= (\phi(r))(o) = o$ $= (\phi(r))(o) = o$

(Similarly we can show $\phi(\chi r) = 0$; but in this course we are working with commutative rings, and so it is not necessary.)

Lecture 13: The quotient ring

Friday, August 25, 2017

12:10 AM

Next starting with an ideal I of R, we will construct the quotient

ring of R by I:

Lemma. Suppose $I \triangleleft R$. Let $(x+I) \cdot (y+I) = xy+I$. Then this is a well-defined binary operation on R_{I} and

(R/I,+,.) is a ring (It is called the quotient ring of

R by I.)

Before we prove this lemma, let's recall the group theoretic counterpart of this concept. For a group G, a subgroup N is called a normal subgroup if, for any $g \in G$, g = Ng. In group theory, you have seen that, if N is a normal subgroup of G, then $(gN) \cdot (gN) = ggN$ defines a well-defined binary operation on the set G/N of (left) cosets of N in G. And $(G/N) \cdot (gN) = g \cdot g \cdot (gN) \cdot (gN) \cdot (gN) = g \cdot (gN) \cdot (gN)$

Since, for a ring R, (R,+) is an abelian group, any Subgroup is a normal subgroup; so $(R/_{\rm I},+)$ is a group

Lecture 13: The quotient ring

Friday, August 25, 2017 12:23 AM

if I is an ideal of R.

Let's also recall that if (A,+) is an abelian group and N

is a subgroup, then $a+N=a'+N \iff a-a'\in N$.

$$(=) a' \in a + N \Rightarrow a' = a + x \text{ for some } x \in N$$

$$\Rightarrow a - a' = -x \in N$$

$$(=) a + N = a' + (a - a') + N = a' + N$$

$$N \text{ as } a - a' \in N \text{ and } N \text{ is a subgroup.})$$

Proof of Lemma.

$$\frac{\text{Well-definedness}}{\text{Well-definedness}} \cdot \begin{array}{c} \chi_1 + I = \chi_2 + I \end{array} \stackrel{?}{\Longrightarrow} \begin{array}{c} \chi_1 y_1 + I = \chi_2 y_2 + I \end{array} .$$

$$y_1 + I = y_2 + I \end{array}$$

Pt. From group theory we know that

$$\chi_1 y_1 + I = \chi_2 y_2 + I \Leftrightarrow \chi_1 y_1 - \chi_2 y_2 \in I;$$

$$\chi_{1}+I=\chi_{2}+I \Rightarrow \chi_{1}-\chi_{2}\in I$$

$$y_1 + I = y_2 + I \Rightarrow y_1 - y_2 \in I \quad 2$$

We have $x_1y_1 - x_2y_2 = x_1y_1 - x_2y_1 + x_2y_1 - x_2y_2$

$$= (\chi_1 - \chi_2) y_1 + \chi_2 (y_1 - y_2) \in I$$
in I by (1)
in I by (2)

Lecture 13: The quotient ring

Friday, August 25, 2017

12:36 AM

The distributive property and the associativity can be deduced

from the fact that R is a ring.

Lemma. Suppose I is an ideal of a ring R. Then

$$\pi : \mathbb{R} \rightarrow \mathbb{R}/_{\mathcal{I}} , \pi(r) = r+\mathcal{I}$$

is a surjective ring homomorphism; and $ker \pi = I$.

(we call It the natural quotient map.)

Pf. From group theory, we know that It is a surjective

group homomorphism of (R,+) to (R/I,+); and $\ker \pi = I$.

So it is enough to check that To preserves multiplication:

 $\mathcal{T}(r_1) \cdot \mathcal{T}(r_2) = (r_1 + I) \cdot (r_2 + I) = r_1 r_2 + I = \mathcal{T}(r_1 r_2),$

and the claim follows.

These lemmas show us that

I is an ideal of $R \iff \exists$ a ring homomorphism $\phi: R \longrightarrow R'$

such that $ker \phi = I$.

Next we prove the 1st isomorphism theorem, in your book it is

Lecture 13: The fundamental homomorphism theorem

Friday, August 25, 2017 12

called the fundamental homomorphism theorem.

Theorem. Suppose $\Leftrightarrow : \mathbb{R} \longrightarrow S$ is a ring homomorphism.

Then \mathbb{O} Im (ϕ) is a subring of S. (the image of ϕ) \mathbb{O} ker (ϕ) is an ideal of \mathbb{R} .

3 $\overline{\Phi}: \mathbb{R}/_{\ker(\Phi)} \longrightarrow \operatorname{Im}(\Phi), \overline{\Phi}(r+\ker\Phi) = \Phi(r)$ is a ring isomorphism.

Proof. (1) Since ϕ is a group homomorphism of (R,+), $Im(\phi)$ is a subgroup of (S,+). So to show it is a subring, it is enough to show it is closed under multiplication:

 $\forall y_1, y_2 \in \text{Im}(\varphi), \exists r_1, r_2 \in \mathbb{R}, \quad y_1 = \varphi(r_1) \text{ and } y_2 = \varphi(r_2).$ So $y_1y_2 = \varphi(r_1) \varphi(r_2) = \varphi(r_1r_2), \text{ which implies}$ $y_1y_2 \in \text{Im} \ \varphi.$

- 2) We have already proved.
- 8 In group theory, you have seen that $\overline{\phi}$ is a well-defined group isomorphism from $(R/_{ker}\phi, +)$ to $(Im \phi, +)$. So it is enough to prove $\overline{\phi}$ preserves multiplication. But

Lecture 13: The fundamental homomorphism theorem

Friday, August 25, 2017

1:02 AM

for the sake of completeness, let's recall the group theory part:

well-definedness.
$$r_1 + \ker \varphi = r_2 + \ker \varphi \stackrel{?}{\Rightarrow} \varphi(r_1) = \varphi(r_2)$$

$$r_1 + \ker \varphi = r_2 + \ker \varphi \implies r_1 - r_2 \in \ker \varphi$$

$$\Rightarrow \varphi(r_1-r_2)=0$$

Injective $\Phi(r_1 + \ker \Phi) = \overline{\Phi}(r_2 + \ker \Phi) \Rightarrow \Phi(r_1) = \Phi(r_2)$

$$\Rightarrow \varphi(r_1-r_2)=0$$

$$\Rightarrow$$
 $r_1-r_2 \in \ker \varphi \Rightarrow r_1+\ker \varphi = r_2+\ker \varphi$.

Surjective . Y yelm +, I reR, y= +(r)

$$\Rightarrow$$
 $y = \overline{\phi}(r + \ker \phi)$.

Preserves addition is similar to next step. (Do it on your own.)

Preserves multiplication + ((+ker+)·(r2+ker+))

$$= \overline{+} (r_1 r_2 + \ker +) = + (r_1 r_2)$$

$$= \phi(\eta) \phi(r_2)$$

$$= \overline{\Phi}(r_1 + \ker \Phi) \overline{\Phi}(r_2 + \ker \Phi).$$

Lecture 13: Examples

Friday, August 25, 2017 1:12 AM

 $\underline{\mathbb{E}}_{x}$. Prove that $\mathbb{Z}_{n} \simeq \mathbb{Z}_{n}$ as two rings.

Pf. Let c: Z - Zn be the residue homomorphism.

Then $c_n(i) = i$ if $0 \le i < n$. So $\lim c_n = \mathbb{Z}_n$. And

a = ker cn => the remainder of a divided by n is o

 \Leftrightarrow $n \mid \alpha \Leftrightarrow \alpha \in n \mathbb{Z}$.

So by the fundamental homomorphism theorem,

 $\overline{C}_n: \mathbb{Z}/_{n} \to \mathbb{Z}_n$, $\overline{C}_n(a+n\mathbb{Z}) = C_n(a)$

is a ring isomorphism.

Ex@Prove that the kernel of the evaluation homomorphism

$$\phi_{12}: \mathbb{Q}[x] \rightarrow \mathbb{R}, \quad \phi_{12}(f(x)) = f(12)$$

is $(x^2-2)Q[x]$.

Prove that Im \(\phi_{\sigma} = \Omega \subseteq \omega \frac{1}{2} \omega \alpha + \sigma \omega \omega \quad \qquad \quad \quad \quad \quad \quad \quad \qqu

© Deduce that QIXI/(x2-2)Q[X] ~ Q[VZ]

Pf. @ Suppose m₁₂(x) ∈ Q[x] is the minimal poly. of √2 over Q; and so ker $\varphi_2 = m_2(x)Q[x]$.

On the other hand, $\phi_{\sqrt{2}}(\chi^2-2) = (\sqrt{2})^2-2=0$; so $m_2(x)|x^2-2$.

Lecture 13: Examples

Sunday, August 27, 2017

8:32 PM

On the other hand, χ^2 -2 is irreducible in Q [x7] (either use

Eisenstein's criterion or the fact that χ^2 has no zero in

in @ as ±12 \$ @ and it has degree 2.) The irreducibility

of χ^2-2 and $m_{12}(x) \mid \chi^2-2$, implies either $m_{12}(x)$ is a

unit or $m_{\sqrt{2}}(x) = x^2 - 2$ (as they are both monic).

If $m_{\sqrt{2}}(x)$ is a unit, $\ker \phi = Q[x]$; which is not possible

as $\phi(1) = 1 \neq 0$. Hence

ker
$$\phi_{12} = m_{12}(x) Q[x] = (x^2 - 2) Q[x]$$
.

(b) In an example earlier we have seen that Q[12] is a

field. In particular, for any a = a we have

Therefore $\forall f(x) \in Q[x], \varphi_{\overline{2}}(f) \in Q[\overline{2}]; \text{ this implies}$

On the other hand, for any a, b = Q, to (a+bx) = a+bvz;

and so Q[12] = Im to imply the claim.

Lecture 13: Evaluation at an algebraic number

Sunday, August 27, 2017

8:46 PM

@ By the fundamental homomorphism theorem, we have

$$\mathbb{Q}[x]/\mathbb{Z}^2$$
 $\simeq \mathbb{Q}[\sqrt{2}]$.

A closer look at the previous example gives us several results.

Proposition. Suppose $\alpha \in \mathbb{C}$ is an algebraic number; this means

x is a zero of a polynomial f(x) ∈ Q[x]\ Zof. Let

\$: Q[x] → C be the evalution at a map; that means

$$\varphi(f) = f(\alpha)$$
. Then

- There is an irreducible polynomial $m(x) \in Q[x]$ such that $\ker \varphi = m(x) Q[x]$
- 2) In $e = \mathbb{Q}[x]$ is the smallest subring of \mathbb{C} that contains \mathbb{Q} as a subset and \mathbb{Z} as an element and $\mathbb{Q}[x] = \{a_0 + a_1x + \cdots + a_mx^m | a_i \in \mathbb{Q}, m \in \mathbb{Z}^{+}\}$.

P. Let max & Q[x] be the minimal poly. of a over Q.

Lecture 13: Evaluation at an algebraic number

Sunday, August 27, 2017

<u>Claim</u> m_a(x) is irreducible.

Pf of claim. Since mcon is menic, it is not zero. As 14 ker of,

deg $m_{\alpha} \ge 1$. Suppose $m_{\alpha}(x) = f(x)g(x)$ for some $f,g \in Q[x]$.

Then $o = m_{\alpha}(\alpha) = f(\alpha)g(\alpha)$. Since C has no zero divisor,

either $f(\alpha) = 0$ or $g(\alpha) = 0$. Without loss of generality, let's

assume $f(\alpha)=0$. So $f \in \ker \phi_{\alpha}=m_{\alpha}(\alpha)Q[\alpha]$; this implies

 $f(x) = m_{x}(x) q(x)$ for some $q \in Q_{1}[x]$.

Hence deg f < deg ma < deg f, which implies

deg g=0. Therefore m_(x) is irreducible in Q[x]

If $A \subseteq \mathbb{C}$ is a subring, $Q \subseteq A$, and $x \in A$, then for any $i \in \mathbb{Z}^{t}$

=> Im + = A. Hence Im + is the smallest subring

of C that has α as an element and \emptyset as a subset.

Lecture 13: Evaluation at an algebraic number; prime

Saturday, February 23, 2019 10

10:35 PM

. Consider the ring homomorphism $\phi: \mathbb{Q}[x] \to \mathbb{C}$; by the 1^{st} isomorphism theorem

$$Q[x]/\underset{\text{ker } \Phi_{a}}{\sim} \text{ Im } \Phi_{a}$$
; and so $Q[x]/\underset{m_{x}(x)}{\sim} Q[x]$.

Next we would like to show $Q[\alpha]$ is a field; you have seen very special cases of this statement: Q[i], $Q[\sqrt{2}]$, and $Q[\omega]$ are fields.

To prove this, we will find out the necessary and sufficient conditions for $I \triangleleft R$ such that R/I is an integral domain or a field.

We start with the easier case: under what conditions

is R/I an integral domain?

Investigation. Since R is a unital commutative ring,

 R_{I} is an integral domain \iff \bigcirc $R_{I} \neq \sigma$

2 R/I does not have a zero divisor

Lecture 13: Prime and maximal ideals

Sunday, August 27, 2017 10:1

⇔OR≠I.

 $\Leftrightarrow \mathbb{O} \ I$ is a proper ideal $\mathbb{C} \ \text{xy} \in I \Rightarrow (\text{xeI} \text{ or yeI})$.

Def. Let R be a unital commutative ring. An ideal I of

R is called a prime ideal if

① I is proper, and ② $\forall x,y \in \mathbb{R}$, $xy \in \mathbb{I} \Rightarrow (x \in \mathbb{I} \text{ or } y \in \mathbb{I})$. (that means $\mathbb{I} \neq \mathbb{R}$.)

Theorem. Let R be a unital commutative ring, and I & R.

Then I is a prime ideal if and only if Ry is an integral

(We have already proved it.)

Getting a field as the factor ring is a bit more tricky.

Def. IdR is called a maximal ideal if I is proper

and $I \subseteq J$ and $J \triangleleft R$ imply either J = I or J = R.

We will show that I is maximal ideal - R/I is a field.