Lecture 06: Ring of polynomials
Wednesday, August 16, 2017 1:59 AM
You have seen and worked with real or complex polynomials in a given variable x. We can and will consider polynomials with coefficients in a given ring in an indeterminant x :

$$
R[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid n \in \mathbb{Z}^{0}, a_{i} \in R\right\} .
$$

We sometimes corite $\sum_{i=0}^{n} a_{i} x^{i}$ instead of $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$.
Or $\sum_{i=0}^{\infty} a_{i} x^{i}$ with an understanding that $a_{n+1}=a_{n+2}=\cdots=0$ for some $n \in \mathbb{Z}^{Z^{\circ}}$.
$R[x]$ with the usual + and. is a ring. Here is the formal definition:

$$
\begin{aligned}
& \sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty} b_{i} x^{i}=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i} \text {, and } \\
& \left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} b_{n-i}\right) x^{n} .
\end{aligned}
$$

Ex. Find $(x+1)^{5}$ in $\mathbb{Z}_{4}[x]$.
Solution $(x+1)^{2}=x^{2}+2 x+1$.

$$
\begin{aligned}
(x+1)^{4}=\left(x^{2}+2 x+1\right)^{2}=x^{4} & +2 x^{3}+x^{2} \\
& +2 x^{3}+0+2 x \\
= & x^{4}+2 x^{2}+1 \Rightarrow(x+1)^{5}=x^{5}+x^{4}+2 x^{3}+2 x^{2}+x+1
\end{aligned}
$$

Lecture 06 : degree of polynomials
Thursday, August 17, 2017 11:15 PM
For $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[x]$, we say

$$
\operatorname{deg} f=\max \left\{n \in \mathbb{Z}^{+} \cup\{-\infty\} \mid a_{n} \neq 0\right\} .
$$

So, degree of the zero polynomial is defined to be $-\infty$; and $\operatorname{deg}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=n$ if $a_{n} \neq 0$.

Ex. $\operatorname{deg}(1)=0$ in any (non-zero) unital ring.
Ex. Find $\operatorname{deg}\left(\left(2 x^{2}-1\right)(2 x+1)\right)$ in $\mathbb{Z}_{4}[x]$.
Solution. $\left(2 x^{2}-1\right)(2 x+1)=2^{2} x^{3}+2 x^{2}-2 x-1$

$$
=2 x^{2}-2 x-1
$$

So $\operatorname{deg}\left(\left(2 x^{2}-1\right)(2 x+1)\right)=2$.
Notice that in the above example

$$
\begin{aligned}
& \operatorname{deg}\left(2 x^{2}-1\right)=2, \operatorname{deg}(2 x+1)=1, \text { and } \\
& \operatorname{deg}\left(\left(2 x^{2}-1\right)(2 x+1)\right)=2 \neq 2+1=\operatorname{deg}\left(2 x^{2}-1\right)+\operatorname{deg}(2 x+1)
\end{aligned}
$$

So, for a general ring R, in $R[x]$ we do NoT have

$$
\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g
$$

A closer look at the previous example shows us why this equality fails; it fails because of the zero divisors.

Lemma. Suppose R is a ring with no zero divisors. Then for any $f, g \in R[x]$, we have

$$
\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g
$$

Proof. If either f or g is zero, then $f g=0$.
So the LHS $=-\infty$ and the $R H S=-\infty+\cdots=-\infty$ (as a convention: $-\infty+n=-\infty$ and $(-\infty)+(-\infty)=-\infty$.)

Suppose f and g are not zero; and

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, \quad a_{n} \neq 0 \\
& g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}, b_{m} \neq 0
\end{aligned}
$$

Then $f(x) g(x)=a_{n} b_{m} x^{n+m}+$ (terms of degree $\left.<n+m\right)$.
Since $a_{n}, b_{m} \neq 0$ and R has no zero divisor $a_{n} b_{m} \neq 0$. Hence $\operatorname{deg} f g=n+m=\operatorname{deg} f+\operatorname{deg} g$.

Corollary. If R has no zero divisors, then $R[x]$ does not

Lecture 06 : Units of a ring of polynomials
has no zero divisors. If D is an integral domain, then $D[x]$ is an integral domain.
Proof. If $f g=0$, then $\operatorname{deg} f g=-\infty$. Since R has no zere divisors, by Lemma, $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$.
Since two integers cannot add up to $-\infty$, either $\operatorname{deg} f=-\infty$ or $\operatorname{deg} g=-\infty$; which implies either $f=0$ or $g=0$. Hence $R[x]$ does not have a zero divisor.

If D is an integral domain, then
(1) D is a non-zero unital ring $\Longrightarrow D[x]$ is a non-zero unital
(2) (1) is commutative ring.
$\rightarrow D I x]$ is commutative
(3) D does NOT have a zero-divisor $\Rightarrow D I x]$ does not have a zero-divisor.

Justify (1) and (2); (3) has been proved in the first part of this argument.
Lemma Suppose D is an integral domain. Then $D[x]^{x}=D^{x}$.
Pf. Suppose $f \in D[x]^{x}$. Then $\left.\exists g(x) \in D I x\right]$ s.t. $f(x) g(x)=1$.

Lecture 06 : Units of a ring of polynomials
Thursday, August 17, 2017 11:50 PM
Since D has no zero-divisors, we have

$$
0=\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g
$$

Notice that, since $f g \neq \sigma, f$ and g are NOT zero. So $\operatorname{deg} f, \operatorname{deg} g \geq 0$.

$$
\left.\begin{array}{l}
\operatorname{deg} f+\operatorname{deg} g=0 \\
\operatorname{deg} f, \operatorname{deg} g \geq 0
\end{array}\right\} \Rightarrow \operatorname{deg} f=\operatorname{deg} g=0 \text {; so }
$$

$\exists a_{0}, b_{0} \in D \backslash\{0\}$ s.t. $f(x)=a_{0}$ and $g(x)=b_{0}$.
Hence $a_{0} b_{0}=1$, which implies $a_{0} \in D^{x}$. Therefore $f \in D^{x}$; which implies $D[x]^{x} \subseteq D^{x}$. (I)

Since D and $D[x]$ have the same (multiplicative) identity, it is clear that $D^{x} \subseteq D[x]^{x}$. Therefore by (I), (II) one gets the claim.

Ex. $\mathbb{Z}[x]^{x}=\{-1,1\} ; \mathbb{Q}[x]^{x}=Q^{x}=\mathbb{Q} \backslash\{0\}$.
Ex. For a general ring $R, R[x]^{x}$ might be much larger than
R^{x} : show that $1+2 x \in \mathbb{Z}_{4}[x]^{x}$.
Solution $(1+2 x)(1-2 x)=1-2^{2} x^{2}=1=(1-2 x)(1+2 x)$.

Lecture 06 : nilpotent elements and units.
Friday, August 18, 2017 12:00 AM
A closer look at the previous example shows that the key property is the fact that $2^{2}=0$ in \mathbb{Z}_{4}; we say 2 is a nilpotent element: In a ring R, an element $a \in R$ is called nilpotent if $\exists m \in \mathbb{Z}^{+}$st. $a^{m}=0$.

It is a good exercise to show that in a unital commutative ring R, we have

$$
\begin{array}{r}
a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]^{x} \Longleftrightarrow a_{0} \in R^{x} \quad \text { and } a_{1}, \cdots, a_{n} \text { are } \\
\text { nilootent. }
\end{array}
$$

The following is the key reason on why the above holds:
Theorem. Suppose R is a unital ring and $a \in R$ is nilpotent. Then $1-a \in R^{x}$.

Pf. Suppose $a^{n}=0$. Then

$$
(1-a)\left(1+a+a^{2}+\cdots+a^{n-1}\right)=1-a^{n}=1
$$

(Similarly $\left(1+a+\cdots+a^{n-1}\right)(1-a)=1$.) Hence $1-a \in R^{x}$.

Lecture 06 : Polynomials vs functions
Prior to this course, you have viewed a polynomial $f \in R[x]$ as a function from R to R. But there is a subtle difference between them. For instance there are only 4 functions from \mathbb{Z}_{2} to \mathbb{Z}_{2}, but there are infinitely may polynomials in $\mathbb{Z}_{2}[x]: \quad \operatorname{deg}\left(x^{n}\right)=n$ and so x, x^{2}, x^{3}, \ldots are distinct polynomials $\left(\sum a_{i} x^{i}=\sum b_{i} x^{i} \Leftrightarrow \forall i, a_{i}=b_{i}.\right)$. They are however, equal as functions:

x	x^{m}
0	0
1	1

An extremely important property of ring of polynomials is the fact that we have a division algorithm:

Theorem Suppose R is an integral domain. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}$. Suppose $b_{m} \in R^{x}$.

Then $\exists q(x) \in R[x]$ (called the quotient) and $r(x) \in R[x] \quad$ (called the remainder) s.t.
(1) $f(x)=q(x) g(x)+r(x)$ (2) deg $\ll \operatorname{deg} g$ Moreover such pair (q, r) is unique.

Lecture 06: Division algorithm
Friday, August 18, 2017 1:08 AM
In class we proved the existence first and then showed the uniqueness when R is an integral domain.

Proof of existence. We proceed by the strong induction on $\operatorname{deg}(f)$. To do so first we have to address the case of $f=0$.

Case of $f=0$. Set $q=r=0$. Then
(1) $\operatorname{deg} r=-\infty<m=\operatorname{deg} g$. (2) $f=0=0 \times g+0$.

Base of induction. $\operatorname{deg} f=0$. Then $f(x)=a_{0}$ and $a_{0} \neq 0$.
Case 1. $\operatorname{deg} g=m>0$.
Set $q=0$ and $r(x)=a_{0}$. Then
(1) $\operatorname{deg} r=0<m=\operatorname{deg} g$. (2) $f=a_{0}=0 \times g(x)+r$

Case 2. $\operatorname{deg} g=m=0$
Then $g(x)=b_{0}$ and $b_{0} \in R^{x}$.
set $q(x)=a_{0} b_{0}^{-1}$ and $r(x)=0$. Then
(1) $\operatorname{deg} r=-\infty<0=\operatorname{deg} g$. (2) $f(x)=a_{0}=\underbrace{\left(a_{0} b_{0}^{-1}\right)}_{q} \underbrace{b_{0}}_{g}+\underbrace{0}_{r}$.

Lecture 06: Division algorithm (existence)
Friday, August 18, 2017 12:53 PM
Strong induction step. Suppose for any polynom- of $\operatorname{deg}<k$ we com find a quotient and a remainder, and we want to get the same result for $f(x)$ with degree k.

Case 1. $\operatorname{deg} f=k<\operatorname{deg} g=m$.
Set $q=0$ and $r(x)=f(x)$; check (1) and (2).
Case 2. $\operatorname{deg} f=k \geq \operatorname{deg} g=m$.
So $f(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0}$ and $a_{k} \neq 0$.
we look for a monomial, ie. $\square x^{\square}$, st. the leading term of $\square x^{\square} g(x)$ is the same as the leading term $a_{k} x^{k}$ of $f(x)$. That means wed like to have $\left(\square x^{\square}\right)\left(b_{m} x^{m}\right)=a_{k} x^{k}$. So the monomial is $a_{k} b_{m}^{-1} x^{k-m}$ (notice that $k-m \geq 0$, and so $a_{k} b_{m}^{-1} x^{k-m}$ is a monomial). Hence

$$
\operatorname{deg}\left(f(x)-a_{k} b_{m}^{-1} x^{k-m} g(x)\right)<k .
$$

So by the strong induction hypo thesis there are $q_{1}(x), r_{1}(x) \in R[x]$

Lecture 06: Division algorithm (existence)
Thursday, February 21, 2019 1:22 AM
st. (1) $\operatorname{deg} r_{1}<\operatorname{deg} g$
(2) $f(x)-a_{k} b_{m}^{-1} x^{k-m} g(x)=q_{1}(x) g(x)+r_{1}(x)$.
(2) implies that $f(x)=\left(a_{k} b_{m}^{-1} x^{k-m}+q_{1}(x)\right) g(x)+r_{1}(x)$.

Let $r(x)=r_{1}(x)$ and $q(x)=a_{k} b_{m}^{-1} x^{k-m}+q_{1}(x)$.
Then (1) implies $\operatorname{deg} r<\operatorname{deg} g$ and \otimes gives us $f(x)=g(x) g(x)+r(x)$.

