
Math103b, lecture 5

Golsefidy

In the previous lecture we gave a formal definition of frac-
tions of elements of an integral domain; suppose D is an inte-
gral domain, a ∈ D and b ∈ D \ {0}, we let

[(a,b)] : {(c,d) ∈ D × (D \ {0})|ad  bc}.

We proved that {[(a,b)]|(a,b) ∈ D× (D \ {0})} is a partition of
D × (D \ {0}); and we set

a

b
: [(a,b)] and Q(D) :


a

b
| a ∈ D,b ∈ D \ {0}


.

Based on some tedious computation one can show:

Lemma 1 Let a
b +

c
d : ad+bc

bd and a
b · c

d : ac
bd. Then these are

well-defined operations; and (Q(D),+, ·) is a ring.
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Parts of proof. Here I only emphasize on what it means to
say these are well-defined operations and mention only some
steps of proof.

The main point is that these operations are defined based on
a choice of representatives for the fractions a

b and c
d; meaning

we have to show the following implications:
a
b 

a′
b′

c
d 

c′
d′


?
⇒


ad+bc
bd 

a′d′+b′c′
b′d′

ac
bd 

a′c′
b′d′

I show the addition is well-defined; multiplication is similar.
a
b 

a′
b′

c
d 

c′
d′


⇒


ab′  a′b

cd′  c′d


?
⇒ b′d′(ad + bc)  bd(a′d′

+ b′c′)

Let’s continue our backward argument:

b′d′(ad + bc)  bd(a′d′
+ b′c′) ⇐

(ab′)(dd′) + (cd′)(bb′)  (a′b)(dd′) + (c′d)(bb′) ⇐
ab′  a′b and cd′

 c′d.

Based on similar type of computation one can show that
multiplication is well-defined and the distributive and asso-
ciative properties hold; and so Q(D) is a ring. 

Next we show that Q(D) is a field.
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Lemma 2 For any a ∈ D \ {0}, a
a 

1
1 and 0

a 
0
1; 1

1 is the identity
of Q(D) and 0

1 is the zero of Q(D). And Q(D) is a field.

Proof. a · 1  1 · a implies that a
a 

1
1; a · 0  0  0 · 1 implies

that 0
a 

0
1. We have a

b +
0
1 

a·1+0·b
b·1 

a
b which implies that 0

1 is
the zero of Q(D). We have a

b · 1
1 

a·1
b·1 

a
b which implies that 1

1

is the identity of Q(D).
Since D is an integral domain, 0  1; and so 1

1 
0
1.

Since D is commutative, we can check that Q(D) is commu-
tative.

For a
b  0, we havea  0; and so b

a ∈ Q(D); and a
b ·ba 

ab
ab 

1
1,

which implies any non-zero element of Q(D) is a unit. So
overall we have that Q(D) is a field. 

Q(D) is called the field of fractions of D. We notice that
similar to that contains a copy of, Q(D) contains a copy of
D:

Lemma 3 Suppose D is an integral domain and Q(D) is its field
of fractions. Then i : D → Q(D), i(a) : a

1 is an injective ring
homomorphism.

Proof. i(a)+ i(b)  a
1 +

b
1 

a·1+b·1
1·1 

a+b
1  i(a+b) and similarly
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i(a)i(b)  a
1
b
1 

ab
1  i(ab); and so i is a ring homomorphism.

To show i is injective, we will show ker i  {0}; suppose
a ∈ ker i; and so a

1 
0
1, which implies a  0. 

Theorem 4 (Universal Property of Field of Fractions) Suppose
D is an integral domain and Q(D) is its field of fractions. Suppose
F is a field and θ : D → F is an injective ring homomorphism. Then
there is a unique injective ring homomorphism θ : Q(D) → F such
that θ(i(a))  θ(a) for any a ∈ D. Alternatively we can say the

following is a commuting diagram:
D Q(D)

F

i

φ φ

Proof. We start with the uniqueness part. We assume there
is a φ which satisfies the desired properties; and we will find
what it should be. For b ∈ D \ {0}, 1

b is the inverse of b
1 ; and so

θ( 1
b)  θ(b1 )−1  θ(b)−1. Hence we have

θ(a
b
)  θ(a

1
1
b
)  θ(a

1
)θ(1

b
)  θ(a)θ(b)−1.

And so such a θ is uniquely determined by θ.
Now we show the existence part. From the uniqueness part

we know that we have to considerθ(ab) : θ(a)θ(b)−1 and show
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that it does have the desired properties. Let’s start by checking
that θ is a ring homomorphism:

θ(a
b
+

c

d
) θ(ad + bc

bd
)  θ(ad + bc)θ(bd)−1

(θ(a)θ(d) + θ(b)θ(c))θ(b)−1θ(d)−1

θ(a)θ(b)−1
+ θ(c)θ(d)−1

θ(a
b
) +θ(c

d
);

and

θ(a
b

c

d
) θ(ac

bd
)  θ(ac)θ(bd)−1

θ(a)θ(c)θ(b)−1θ(d)−1

(θ(a)θ(b)−1)(θ(c)θ(d)−1)
θ(a

b
)θ(c

d
).

To showθ is injective, again we show its kernel is zero: suppose
a
b ∈ kerθ; then θ(ab)  θ(a)θ(b)−1  0; and so θ(a)  0, which
implies a  0 as θ is injective. This implies that a

b 
0
b 

0
1.

We also notice that θ(1)θ(1)  θ(1); and so either θ(1)  0 or
θ(1)  1 (by the cancellation law for integral domains). Since
θ is injective and 0  1, we deduce that θ(1)  1. Hence
θ(i(a))  θ(a1 )  θ(a)θ(1)−1  θ(a); and claim follows. 

5



In this course, for us is very important to know the state-
ment of the above result and know how to use it. As you saw
its proof consists of many easy steps with no new ideas.

Let’s discuss two examples and see how the Universal Prop-
erty of Field of Fractions can be used.

Example. Suppose [i] : {a + bi| a,b ∈ } and [i] :

{a+bi| a,b ∈ }. One can use the subring criterion and show
that [i] and [i] are subrings of . [i] is called the ring of
Gaussian integers. Prove that Q([i]) ≃ [i].

General method. To show a given ring F is isomorphic to the
field of fractions Q(D) of a given integral domain D one can
use the following steps:

Step 1. Show that F is a field.
Step 2. Find an injective ring homomorphism θ : D → F.
Step 3. Using Universal Property of Field of Fractions get

that θ : Q(D) → F,θ(ab) : θ(a)θ(b)−1 is an injective ring ho-
momorphism.

Step 4. Prove thatθ given in the previous step is surjective.
Proof of example. Step 1. To show [i] is a field, it is enough

to show that any non-zero element is a unit (notice that [i] is
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a non-zero subring of , and so it is an integral domain). For
a + bi ∈ [i] \ {0}, either a  0 or b  0; and so a − bi  0.
Hence we have

1
a + bi


a − bi

(a + bi)(a − bi) 
a − bi

a2 + b2 
a

a2 + b2 −
b

a2 + b2i.

Since a
a2+b2 ,− b

a2+b2 ∈ , we have that 1
a+bi ∈ [i] which implies

that [i] is a field.
Step 2. Clearly θ : [i] → [i], θ(a + bi) : a + bi is an

injective ring homomorphism.
Step 3. As it is explained in the general case, by Universal

Property of Field of Fractions

θ : Q([i]) → [i],θ( z
z′
) : θ(z)θ(z′)−1

 zz′−1

is an injective ring homomorphism.
Step 4. Next we show that θ is surjective. Notice that any

element of [i] can be written as a+bi
c for some a,b, c ∈ 

(after taking the common denominator of the real and the
imaginary parts). On the other hand, θ(a+bic )  (a + bi)c−1,
which implies that θ is surjective. Therefore θ is a bĳective
ring homomorphism, which implies that Q([i]) ≃ [i]. 

Example. Suppose F is a field. Then Q(F) ≃ F.
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Proof. Let θ : F → F, θ(a) : a; clearly θ is an injective ring
homomorphism. So by Universal Property of Field of Fractions
θ : Q(F) → F,θ(ab) : θ(a)θ(b)−1  ab−1 is an injective ring
homomorphism. We notice that for any a ∈ F, θ(a1 )  a · 1−1 

a; and so θ is surjective as well; and claim follows. 

8


