Homework 7, math103b winter 2019

1. Suppose $D=\mathbb{Z}[\sqrt{-21}]$.
(a) Prove that $\mathrm{D}^{\times}=\{ \pm 1\}$.
(b) Prove that $\sqrt{-21}$ is irreducible in D .
(c) Prove that $\sqrt{-21}$ is not prime in D.
(d) Deduce that D is not a UFD.
2. Suppose E is a field and $\mathbb{Z} / p \mathbb{Z} \subseteq E$ where p is prime. Suppose $\alpha \in E$ is a zero of $x^{p}-x+1$. Prove that

$$
x^{p}-x+1=(x-\alpha)(x-\alpha-1) \cdots(x-\alpha-p+1)
$$

in $\mathrm{E}[\mathrm{x}]$. (Hint. Using Fermat's little theorem show that $\alpha+i$ is a zero of $x^{p}-x+1$ for any $i \in \mathbb{Z} / p \mathbb{Z}$. Then use the generalized factor theorem.)
3. Let $\beta:=\sqrt[n]{2}$ where n is a positive integer.
(a) Prove that the minimal polynomial $m_{\beta}(x)$ of β over \mathbb{Q} is $x^{n}-2$.
(b) Prove that $\left\{1, \beta, \ldots, \beta^{n-1}\right\}$ is a \mathbb{Q}-basis of $\mathbb{Q}[\beta]$.
(c) Write β^{-1} as a \mathbb{Q}-linear combination of $1, \beta, \ldots, \beta^{n-1}$.

