Homework 7, math103b winter 2019

1. Suppose D = $\mathbb{Z}[\sqrt{-21}]$.

- (a) Prove that $D^{\times} = \{\pm 1\}$.
- (b) Prove that $\sqrt{-21}$ is irreducible in D.
- (c) Prove that $\sqrt{-21}$ is not prime in D.
- (d) Deduce that D is not a UFD.
- 2. Suppose E is a field and $\mathbb{Z}/p\mathbb{Z} \subseteq E$ where p is prime. Suppose $\alpha \in E$ is a zero of $x^p - x + 1$. Prove that

$$x^{p} - x + 1 = (x - \alpha)(x - \alpha - 1) \cdots (x - \alpha - p + 1)$$

in E[x]. (Hint. Using Fermat's little theorem show that $\alpha + i$ is a zero of $x^p - x + 1$ for any $i \in \mathbb{Z}/p\mathbb{Z}$. Then use the generalized factor theorem.)

- 3. Let $\beta := \sqrt[n]{2}$ where n is a positive integer.
 - (a) Prove that the minimal polynomial $m_{\beta}(x)$ of β over \mathbb{Q} is $x^n 2$.
 - (b) Prove that $\{1, \beta, \dots, \beta^{n-1}\}$ is a Q-basis of Q[β].

(c) Write β^{-1} as a Q-linear combination of $1, \beta, \ldots, \beta^{n-1}$.