Homework 6, math103b winter 2019

1. Suppose E is a field extension of \mathbb{Z}_{3} that contains a zero α of $x^{3}-x+1$.
(a) Prove that $\mathbb{Z}_{3}[\alpha]=\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \mid a_{0}, a_{1}, a_{3} \in \mathbb{Z}_{3}\right\}$.
(b) Prove that $\mathbb{Z}_{3}[\alpha]$ is a field and $\left|\mathbb{Z}_{3}[\alpha]\right|=27$.
2. Let $I=\{2 p(x)+x q(x) \mid p(x), q(x) \in \mathbb{Z}[x]\}$. Prove that I is not a principal ideal and deduce that $\mathbb{Z}[x]$ is not a PID.
3. Let $\beta:=\sqrt{1+\sqrt{3}}$.
(a) Prove that the minimal polynomial $m_{\beta}(x)$ of β over \mathbb{Q} is $x^{4}-2 x^{2}-2$.
(b) Prove that

$$
\mathbb{Q}[\beta]=\left\{a_{0}+a_{1} \beta+a_{2} \beta^{2}+a_{3} \beta^{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Q}\right\} .
$$

(c) Prove that $\mathbb{Q}[\beta] \simeq \mathbb{Q}[x] /\left(x^{4}-2 x^{2}-2\right) \mathbb{Q}[x]$ and it is a field.
(d) Write β^{-1} as a \mathbb{Q}-linear combination of $1, \beta, \beta^{2}, \beta^{3}$.

