Homework 6, math103b winter 2019

- 1. Suppose E is a field extension of \mathbb{Z}_3 that contains a zero α of $x^3 x + 1$.
 - (a) Prove that $\mathbb{Z}_3[\alpha] = \{ \mathfrak{a}_0 + \mathfrak{a}_1 \alpha + \mathfrak{a}_2 \alpha^2 | \mathfrak{a}_0, \mathfrak{a}_1, \mathfrak{a}_3 \in \mathbb{Z}_3 \}.$
 - (b) Prove that $\mathbb{Z}_3[\alpha]$ is a field and $|\mathbb{Z}_3[\alpha]| = 27$.
- 2. Let I = $\{2p(x) + xq(x) | p(x), q(x) \in \mathbb{Z}[x]\}$. Prove that I is not a principal ideal and deduce that $\mathbb{Z}[x]$ is not a PID.

3. Let
$$\beta := \sqrt{1 + \sqrt{3}}$$
.

- (a) Prove that the minimal polynomial $m_{\beta}(x)$ of β over \mathbb{Q} is $x^4 2x^2 2$.
- (b) Prove that

$$\mathbb{Q}[\beta] = \{ \mathfrak{a}_0 + \mathfrak{a}_1\beta + \mathfrak{a}_2\beta^2 + \mathfrak{a}_3\beta^3 | \mathfrak{a}_0, \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3 \in \mathbb{Q} \}.$$

- (c) Prove that $\mathbb{Q}[\beta] \simeq \mathbb{Q}[x]/(x^4 2x^2 2)\mathbb{Q}[x]$ and it is a field.
- (d) Write β^{-1} as a Q-linear combination of $1, \beta, \beta^2, \beta^3$.