Homework 5, math103b winter 2019

1. Prove that the following polynomials are irreducible in $\mathbb{Q}[x]$.
(a) $x^{n}-12$ where $n \in \mathbb{Z}^{+}$.
(b) $x^{3}-x^{2}-x-1$.
(c) $x^{5}-10 x^{3}+25 x^{2}-51 x+2017$ (Only in this part of the problem you are allowed to use the following advance theorem: Let p be a prime and $a \in \mathbb{Z}_{p} \backslash\{0\}$. Then $x^{p}-x+a$ is irreducible in $\mathbb{Z}_{p}[x]$.)
2. Let $\mathrm{f}_{0}(\mathrm{x}):=\mathrm{x}^{5}-3 \mathrm{x}^{3}+6 \mathrm{x}^{2}+9 \mathrm{x}-21$.
(a) Prove that $f_{0}(x)$ is irreducible in $\mathbb{Q}[x]$. (Hint; Think about a useful criterion!)
(b) Let α be a real zero of $f_{0}(x)$. Suppose $\phi_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{R}$ is the evaluation map at α; that means $\phi_{\alpha}(f(x)):=$ $f(\alpha)$. Prove that

$$
\operatorname{ker} \phi_{\alpha}=f_{0}(x) \mathbb{Q}[x] .
$$

(Hint: Use the fact that $\mathbb{Q}[x]$ is a PID and part (a).)

