Homework 4, math103b winter 2019

- 1. Prove that $x^3 x + 1 \in \mathbb{Z}_3[x]$ is irreducible.
- 2. Prove that $x^{2k} + x^{2k-1} + \cdots + x + 1$ has no zero in \mathbb{Q} where k is a positive integer.
- 3. Suppose p is an odd prime. Prove that 2 is a zero of $x^{p^2+p} x 2$ in \mathbb{Z}_p .
- 4. Suppose p is an odd prime number. Notice that $\mathbb{Z}_p[x]$ is an integral domain of characteristic p.
 - (a) Prove that $(x 1)^p = x^p 1$ in $\mathbb{Z}_p[x]$.
 - (b) Prove that $(x 1)^{p-1} = x^{p-1} + x^{p-2} + \dots + 1$ in $\mathbb{Z}_p[x]$.

(Hint: observe that $x^p - 1 = (x - 1)(x^{p-1} + \dots + x + 1)$; and use cancellation law in an integral domain.)

(c) Use part (b) to deduce that for any $0 \le i \le p - 1$ we have $\binom{p-1}{i} = (-1)^i$ in \mathbb{Z}_p .