Homework 4, math103b winter 2019

1. Prove that $x^{3}-x+1 \in \mathbb{Z}_{3}[x]$ is irreducible.
2. Prove that $\chi^{2 \mathrm{k}}+\chi^{2 \mathrm{k}-1}+\cdots+x+1$ has no zero in \mathbb{Q} where k is a positive integer.
3. Suppose p is an odd prime. Prove that 2 is a zero of $x^{p^{2}+p}-x-2$ in \mathbb{Z}_{p}.
4. Suppose p is an odd prime number. Notice that $\mathbb{Z}_{p}[x]$ is an integral domain of characteristic p.
(a) Prove that $(x-1)^{p}=x^{p}-1$ in $\mathbb{Z}_{p}[x]$.
(b) Prove that $(x-1)^{p-1}=x^{p-1}+x^{p-2}+\cdots+1$ in $\mathbb{Z}_{p}[x]$.
(Hint: observe that $x^{p}-1=(x-1)\left(x^{p-1}+\cdots+x+1\right)$; and use cancellation law in an integral domain.)
(c) Use part (b) to deduce that for any $0 \leq i \leq p-1$ we have $\binom{p-1}{i}=(-1)^{i}$ in \mathbb{Z}_{p}.
