Homework 3, math103b winter 2019

1. Suppose p is a prime and $a \in \mathbb{Z}_{p} \backslash\{0\}$. Show that $x^{p}-x+a$ has no zeros in \mathbb{Z}_{p}.
2. Find all the primes p such that $x+2$ is a factor of

$$
x^{6}-x^{4}+x^{3}-x+1
$$

in $\mathbb{Z}_{p}[x]$.
3. Find a zero of $x^{3}-2 x+1$ in $\mathbb{Z}_{5}[x]$ and express it as a product of a degree 1 and a degree 2 polynomial.
4. (a) In class we proved that, when p is prime, for any $a \in \mathbb{Z}_{p}$ we have $a^{p}=a$. Use this result to show

$$
x^{p}-x=x(x-1) \cdots(x-(p-1))
$$

in $\mathbb{Z}_{p}[x]$.
(b) Use part (a) to deduce $(p-1)$! $=-1$ in \mathbb{Z}_{p}.
(Hint: think about zeros of $x^{p}-x$ in \mathbb{Z}_{p}.)
5. (a) Suppose $\omega:=\frac{-1+\sqrt{-3}}{2}$. Show that

$$
\mathbb{Z}[\omega]:=\{a+b \omega \mid a, b \in \mathbb{Z}\}
$$

is a subring of \mathbb{C}.
(b) Show that the field of fractions of $\mathbb{Z}[\omega]$ is

$$
\mathbb{Q}[\omega]:=\{a+b \omega \mid a, b \in \mathbb{Q}\} .
$$

(Hint: Use $\omega^{2}+\omega+1=0$; observe that $\omega+\bar{\omega}=-1$ and $\omega \bar{\omega}=1$ where $\bar{\omega}$ is the complex conjugate of ω; compute $(a+b w)(a+b \bar{\omega})$.
6. How many degree 2 and degree 3 polynomials are there in $\mathbb{Z}_{2}[x]$ that have no zeros in \mathbb{Z}_{2} ?

