Homework 3, math103b winter 2019

- 1. Suppose p is a prime and $a \in \mathbb{Z}_p \setminus \{0\}$. Show that $x^p x + a$ has no zeros in \mathbb{Z}_p .
- 2. Find all the primes p such that x + 2 is a factor of

$$x^6 - x^4 + x^3 - x + 1$$

in $\mathbb{Z}_p[x]$.

- 3. Find a zero of $x^3 2x + 1$ in $\mathbb{Z}_5[x]$ and express it as a product of a degree 1 and a degree 2 polynomial.
- 4. (a) In class we proved that, when p is prime, for any $a \in \mathbb{Z}_p$ we have $a^p = a$. Use this result to show

$$x^{p} - x = x(x - 1) \cdots (x - (p - 1))$$

in $\mathbb{Z}_p[x]$.

(b) Use part (a) to deduce (p - 1)! = -1 in \mathbb{Z}_p .

(Hint: think about zeros of $x^p - x$ in \mathbb{Z}_p .)

5. (a) Suppose $\omega := \frac{-1+\sqrt{-3}}{2}$. Show that

$$\mathbb{Z}[\omega] := \{a + b\omega | a, b \in \mathbb{Z}\}$$

is a subring of \mathbb{C} .

(b) Show that the field of fractions of $\mathbb{Z}[\omega]$ is

$$\mathbb{Q}[\omega] := \{ a + b\omega | a, b \in \mathbb{Q} \}.$$

(Hint: Use $\omega^2 + \omega + 1 = 0$; observe that $\omega + \overline{\omega} = -1$ and $\omega \overline{\omega} = 1$ where $\overline{\omega}$ is the complex conjugate of ω ; compute $(a + b\omega)(a + b\overline{\omega})$.)

 How many degree 2 and degree 3 polynomials are there in Z₂[x] that have no zeros in Z₂?