Homework 2
Saturday, January 19, 2019

1. Let $f: \mathbb{Z}[\sqrt{2}] \rightarrow\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}$, $f(a+\sqrt{2} b)=\left[\begin{array}{ll}a & 2 b \\ b & a\end{array}\right]$ is an isomorphism of rings. (You do not need to show that the codomain is a subring of $M_{2}(\mathbb{Z})$.)
2. Suppose A is a unital commutative ring of characteristic $p>0$, where p is prime. Prove that, for any $x, y \in A,(x+y)^{p}=x^{p}+y^{p}$.
(Hint. You are allowed to use binomial expansion without proof: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$ where $\binom{n}{i}=\frac{n!}{i!(n-i)!}$, and $\binom{n}{i} \in \mathbb{Z}$.
Prove $p \left\lvert\,\binom{ p}{i}\right.$ if $\sigma<i<p$ and p is prime.
Deduce the claim.)
3.(a) Find a zera-divisor in $\mathbb{Z}_{5}[i]=\left\{a+b i \mid a, b \in \mathbb{Z}_{5}\right\}$ where $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$.
(You do not need to show it is a ring.)
(b) Show that $x^{2}+1$ has no zero in \mathbb{Z}_{7}.
(c) Show that, if either $a \neq 0$ or $b \neq 0$ in \mathbb{Z}_{7}, then $a^{2}+b^{2} \neq 0$ in \mathbb{Z}_{7}

Homework 2
Saturday, January 19, 2019
(d) Show that $\mathbb{Z}_{7}[i]=\left\{a+b i \mid a, b \in \mathbb{Z}_{7}\right\}$ is a field.
(Hint. (c) if $a \neq 0$, then $a^{2}+b^{2}=a^{2}\left(1+\left(\frac{b}{a}\right)^{2}\right)$; use (b).
(d) It is enough to show $\mathbb{Z}_{7}[i]$ is an integral domain. (why?)

$$
(a+b i)(c+d i)=0 \Rightarrow(a+b i)(a-b i)(c-d i)=0
$$

$\Rightarrow\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=0$ in \mathbb{Z}_{7} use (c) to show either $a+b i=0$ or $c+d i=0$-)
4. Show that the characteristic of an integral domain is either zero or prime.
5. Find the characteristic of $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ and $\mathbb{Z}_{6} \times \mathbb{Z}_{8} \times \mathbb{Z}_{9}$.

