Homework 1

1. Suppose R_{1}, \ldots, R_{n} are rings. Prove that R_{1}, \ldots, R_{n} are unital if and only if $R_{1} \times \cdots \times R_{n}$ is unital.
2. Suppose R is a unital ring. An element x of R is called a unit if it has a multiplicative inverse; that means $\exists x^{\prime} \in R$ such that $x x^{\prime}=x^{\prime} x=1_{R}$. Let R^{x} be the set of all the units of R.
(a) Prove that R^{x} is closed under multiplication.
(b) Prove that $\left(R^{x}, \cdot\right)$ is a group.
(c) Suppose R_{i} 's are unital rings. Prove that

$$
\left(R_{1} \times \cdots \times R_{n}\right)^{x}=R_{1}^{x} \times \cdots \times R_{n}^{x} .
$$

(d) Find $(\mathbb{Z} \times \mathbb{Q})^{x}$.
3. Show that $\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R}.
4. As in problem 3 one can show $F=\{a+b \sqrt{3} \mid a, b \in Q\}$ is a ring. Show that F^{x} is a field.

Homework 1
Saturday, January 12, 2019 3:14 AM
5. Suppose A is a ring with unity 1 . Suppose there is $a_{0} \in A$ such that $a_{0}^{2}=1$. Let $B:=\left\{a_{0} r a_{0} \mid r \in A\right\}$. Prove that B is a subring of A.

