Lecture 25: Finite fields
Monday, June 4, 2011 113 AM
In the previous lecture are proved:
Theorem. If
$$foo \in \mathbb{Z}_p IXI$$
 is irreducible of degree n, then
E:= $\mathbb{Z}_p IXI/\langle fern \rangle$ is a field of order p^n .
An important property of a finite field of order p^n is
the follocoing:
Lemma. Suppose E is a field and $|E|=q$. Then
 $\forall \alpha \in E$, $\alpha^q = \alpha$.
St. of $\alpha <=0$, then $\alpha^q = 0 = \alpha$. If $\alpha \neq 0$, then $\alpha \in U(E)$.
By Lagrange's theorem $\alpha^{IV(E)}=1$; and so $\alpha^{q-1}=1 \Rightarrow \alpha^q = \alpha$.
Theorem. Suppose E is a finite field and $|E|=q$. Then
 $II (X-\alpha) = \chi^{-}X$.
 $\alpha \in E$
Theorem is a finite field and $|E|=q$. Then
 $II (X-\alpha) = \chi^{-}X$.
 $\alpha \in E$
Sy the previous lemma, $\forall \alpha \in E$ is a zero of $\chi^q - X$. And
so $\exists g(x) \in E IXI$, $\chi^q - \chi = g(x) \prod_{\alpha \in E} (\chi - \alpha)$.
Comparing degrees are get $q = \deg g + |E| = \deg g + q$.

Lecture 25: A splitting field of a polynomial
riday, Mare 2:2018 11:40 AM
And 50 deg g=0. This means
$$g(x) = c \in E \setminus \frac{5}{2} e^{5}$$
.
Comparing the leading coeff. We deduce that c=1 and
claim folloos. •
We will come back to this theorem later. For now let's go back
to zeros of polynomials. So far we have found a field extension
that contains a zero of an irreducible polynomial. Can we
find a field extension that contains all the zeros of an
arbitrary positive degree polynomial?
Def. Suppose F is a field, from e FIXI has positive degree;
E is called a splitting field of f over F if
(i) $F \subset \frac{i}{2} E$; that means 2 is an injective ring
homomorphism.
(2) $\exists \alpha_{1,1},...,\alpha_n \in E$, $f(x) = c (x-\alpha_1) \cdots (x-\alpha_n)$
 $c \in E$
(3) E is the smallest field that contains i(F) and
 $\alpha_{1,1},...,\alpha_n$.

Lecture 25: Examples of splitting fields
Monday, June 4, 2018 2:25 MM
Ex. QIJI is a splitting field of
$$x^2 - 2$$
 over Q.
Solution. $Q = QIJZ$
 $a \mapsto a$
 $x^2 - 2 = (x - \sqrt{z})(x + \sqrt{z})$
 $A \mapsto a$
 $x^2 - 2 = (x - \sqrt{z})(x + \sqrt{z})$
 $A \mapsto a$
 $a \mapsto a$
 $x^2 - 2 = (x - \sqrt{z})(x + \sqrt{z})$
 $A \mapsto a$
 $a \mapsto a$

Lecture 25: Examples of splitting fields
Monday, June 4, 2018 2:38 PM
[Recall from complex numbers:
if
$$z \in \mathbb{C}$$
 and $z^{n} = 1$, then $|z|^{n} = 1$ implies $|z| = 1$. And so z
is on the unit circle. If the argument
of z is θ , then multip by z is
just rotation by angle θ about the origin. So $z^{n} = 1$
means after n times rotation are get back to 1. Therefore
 $n\theta = 2 k\pi$ for some $k \in \mathbb{Z}$. Hence are get n possible
values 1, ξ , ξ^{2} , ..., ξ^{n-1} where
 $\xi = e^{\frac{2\pi i}{n}} = C_{s}(\frac{2\pi}{n}) + i Sin(\frac{2\pi}{n})$.
And so $y^{n} - 1 = (y-1)(y-\xi) \cdots (y-\xi^{n-1})$.
Hence $\sqrt[3]{2}, \sqrt[3]{2}, \sqrt[$

Lecture 25: Existence of a splitting field
Monday, June 4, 2018 2:50 PM

$$\zeta \in \mathbb{Q} [\sqrt[3]{2}, \sqrt[3]{2} \zeta, \sqrt[3]{2} \zeta^2]$$
. Hence $\mathbb{Q} [\sqrt[3]{2}, \zeta] \subseteq \mathbb{Q} [\sqrt[3]{2}, \sqrt[3]{2} \zeta, \sqrt[3]{2} \zeta^2]$.
Clearly $\sqrt[3]{2}, \sqrt[3]{2} \zeta, \sqrt[3]{2} \zeta^2 \in \mathbb{Q} [\sqrt[3]{2}, \zeta]$. So $\mathbb{Q} [\sqrt[3]{2}, \zeta]$
is a splitting field of $\chi^3 = 2$ over \mathbb{Q} .
Theorem. Suppose F is a field and for ϵ Fixi has positive.
degree. Then fin has a splitting field over F.
Pf. We proceed by induction on deg(f).
Base. If deg(f)=1, then fix= $a_{\pm}x_{\pm}a_{0}$ and $a_{1}\in F_{1}U$.
Hence $f_{TX} = a_{\pm}(x_{\pm} \frac{\alpha_{0}}{\alpha_{\pm}})$, $\frac{\alpha_{0}}{\alpha_{\pm}}\in F$; and so F is
a splitting field of fix over F.
Induction Step. Fix] is a UFD. So fix= $\prod_{i=1}^{m} p_{i}(x_{i})$ where
 $p_{i}(x_{i})$ is irreducible in Fix]. Hence $\exists F_{C} \neq F$ and
 $x_{i}\in F$ st. $\overline{i}(T_{1})(\alpha_{i})=o$ (Hence $\overline{i}(f)(\alpha_{i})=o$) and \overline{F} is
the smallest ring that contains α and $i(F)$. Therefore by
the factor theorem, $\exists F_{CX} \in F_{IX}$ st. deg $\overline{f} = d_{ey}f - 1$
and $f_{CX} = (x-\alpha), \overline{f}(x_{i})$. Noce by the induction hypothesis,

Lecture 25: Existence of a splitting field Monday, June 4, 2018 11:29 AM I has a splitting field over F; that means \exists a field E and \hat{i} ; $F \subset E$ injective ring hom. $\exists \alpha_1, \dots, \alpha_{n-1} \in E$, $\widehat{i(F)}(x) = C(x - \alpha_1) \cdots (x - \alpha_{n-1})$ for some $c \in F \setminus \{o\}$. The smallest subfield of E that contains i(F) and a, ..., dn-1 go over this part of argument in the next lecture is E. Ŧ_cⁱ, Ŧ_ci E Consider. $i(f)(x) = \hat{i}(\bar{i}(f)(x))$ = \hat{i} $((\chi - \alpha) \overline{+}(\chi))$ $= (x - \hat{i} (x)) \hat{i} (\bar{f}) (x)$ $= c \left(x - \frac{2}{3} \left(x - \alpha_{1} \right) \left(x - \alpha_{n-1} \right) \right) \cdots \left(x - \alpha_{n-1} \right) \cdot \cdots \cdot \left(x - \alpha_{n-1} \right) \cdot \cdots \right) \cdot \left(x - \alpha_{n-1} \right) \cdot \cdots \cdot \left(x - \alpha_{n-1}$. A subfield of E that contains i(F) and a, ..., an contains $\hat{i}(\overline{i}(F))$ and $\hat{i}(a)$; And so it contains i (i(F) IxI) and dy,..., dn-1. 3 Hence it should be E.; and claim follows.