Lecture 19: Fermat's little theorem and having no zeros

Monday, May 14, 2018 11:42 Al

In the previous lecture are showed:

Lemma. Suppose $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$. If f has a zero in \mathbb{Z}_m .

Pf. Since f is monic, if b/c is a zero of f, gd(b,c)=1, and c>o, then c=1; and So f(b)=o. Hence f(b)=o (mod m); which implies f has a zero in \mathbb{Z}_m . \blacksquare Using the above lemma and Fermat's little theorem we can find out whether certain poly. (of large degree) has a rational zero or not

 E_{X} . $X^3 - X + 2018$ has no zero in Q.

Solution. $x^3_{-X+2018}$ modulo 3 is x^3_{-X+2} ; and by Fermat's little theorem, $\forall \alpha \in \mathbb{Z}_3$, $\alpha^3_{-\alpha+2} = 2 \neq 0$; and so $x^3_{-X+2018}$ has no zeros in \mathbb{Z}_3 ; therefore by the above lemma it has no zero in \mathbb{Q} . \blacksquare

(Since deg (x3-x+2018)=3, we can deduce that it is irred.

Lecture 19: Fermat's little theorem and having no zeros

Friday, May 18, 2018 11:01 AM

(. IXI Q ni

 $Ex. \times - \times^5 + 2018$ has no zero in Q.

Pt. Suppose to the contrary that it does have a zero in a. Then by the previous lemma, it has a zero in Z5. (x)

By Fermat's little theorem, $\forall a \in \mathbb{Z}_5$, $a^5 = a$. And so

by induction on n, one has $a^5 = a$. Hence

 (5^{103}) 5 $a + 2018 = a - a + 3 = 3 \neq 0$ in \mathbb{Z}_{5} ;

which contradicts (x).

 $\underline{\underline{\text{Ex.}}}$ Show that $x^{50} - \chi + 2017$ has no zero in \overline{Z}_5 and Q.

77. By the previous lemma, it is enough to show this poly. has

no zeros in \mathbb{Z}_{5} .

 $\forall \alpha \in \mathbb{Z}_{\frac{1}{5}}, \quad \alpha^{50} = \alpha + 2017 = \alpha - \alpha + 2$

 $= (a^2)^{(5^2)} - a + 2$ As a conseq.

of Fermat's $= \alpha^2 - \alpha + 2$.

little theorem

Lecture 19: Fermat's little theorem and having no zeros

Friday, May 18, 2018 11:14 AM

$$a \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$
 . And so $x = x + 2017$ has $a^2 - a + 2 \mid 2 \mid 2 \mid 4 \mid 3 \mid 4$ no zeros in \mathbb{Z}_5 .

Next are will use the residue maps to get an irreducibility criterion.

Theorem. Let p be a prime, and

$$f(x) = x^{n} + a_{n-1}x^{n-1} + ... + a_{0} \in \mathbb{Z}[x]$$

Suppose $c_p(f)$ is irreducible in $\mathbb{Z}[x]$. Then f is irreducible in $\mathbb{Q}[x]$.

To prove this criterion we follow the same steps as for finding zeros: assuming f is reducible; we have to show cp (f) is reducible:

Step 1. Going from Q to Z;

Step 2. Going from Z to Zp.

Step 1 is rather hard and it is a consequence of Gauss's lemma.

Lecture 19: The content of an integer polynomial

Friday, May 18, 2018 11:2

As we have seen earlier, there is a subtle difference between irreducibility in QIXI and irreducibility in ZIXI.

Ex. $2x^2+4$ is irreducible in Q[x] as it is of deg. 2 and it has no zero in Q. But $2x^2+4=Q(x^2+2)$ and 2, $x^2+2 \notin U(Z[x])$; and so $2x^2+4$ is reducible in Z[x].

So to find out if $f(x) \in \mathbb{Z}[X]$ is irreducible, the first thing that we have to do is to calculate the g.c.d. of its coeff.

Def. For $f(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{Z}[x] \setminus \{0\}$, the content of f is $\alpha(f) := \gcd(a_0, a_1, ..., a_n)$.

$$\underline{Ex}$$
. $\alpha(2x) = 2$, $\alpha(2x^2+4) = 2$, $\alpha(x^3+2x+6) = 1$.

Let's recall three properties of g.c.d .:

1 Let
$$d = gcd(a_0,...,a_n)$$
. Then $gcd(\frac{a_0}{d},...,\frac{a_n}{d}) = 1$

B For
$$c \in \mathbb{Z}^+$$
, $gcd(ca_0,...,ca_n) = c gcd(a_0,...,a_n)$.

Lecture 19: The content of an integer polynomial

Friday, May 18, 2018 11:34 AM

Here are immediate consequences of these properties:

Proposition (Basic properties of content).

(1) Y fixie Z [x]/203, fix) = a(f) fix) for some

FONEZIXI such that $\alpha(\overline{F}) = 1$.

(we say & is primitive.)

2) \forall \forall \cong \zero \zero \zero \zero \zero \zero \zero \quad \qua

 $\ensuremath{\mathfrak{B}}\ \forall\ \ensuremath{\mathsf{fm}}\ \in\ensuremath{\mathbb{Z}}\ \ensuremath{\mathsf{INJ}}\ \ensuremath{\mathsf{N}}\ \ens$

 $\underline{\mathcal{P}}$ (1) $f(x) = a_n x^n + \dots + a_s$. Then $\alpha(f) = \gcd(a_s, \dots, a_n)$.

Say $d = \alpha(f)$. So $gcd(\frac{\alpha_0}{d}, ..., \frac{\alpha_n}{d})$. Let $f(x) = \frac{\alpha_n}{d} x^n + ... + \frac{\alpha_0}{d}$.

Hence $\alpha(\overline{+}) = 1$ and f(x) = d. $\overline{f}(x) = \alpha(\overline{+})$ $\overline{f}(x)$.

 $\alpha(cf) = \gcd(ca_0, \dots, ca_n) = c \gcd(a_0, \dots, a_n) = c \alpha(f)$.

Def. f(x) \(\mathbb{Z} [x] is called primitive if \(\alpha(f) = 1.