Lecture 17: Polynomials over Z/pZ

Friday, May 11, 2018

11:10 AM

In the previous lecture we showed:

Theorem. Suppose F is a field and $f(x) \in F[x]$ is a poly. of deg. n. Then f has at most n distinct zeros in F.

We also emphasized on distinguishing a poly. From the underlying function. For instance by Fermat's little theorem deg p polynomial x^p-x gives us the zero function on \mathbb{Z}_{2} .

Next we see how fruitful it is to use poly. as functions !

Theorem. $\chi^{p} = \chi(\chi-1)\cdots(\chi-cp-1)$ in $\mathbb{Z}_{p}[\chi]$. (p:prime)

 $\frac{2P}{N}$. Since $x^{P}-x$ gives us the zero function on \mathbb{Z}_{p} ,

0, 1, ..., 7-1 are distinct zeros of x2-x. Hence by

a result proved in the previous lecture = gcx = Zp[x]

(I, is a field and so we are allowed to use the mentioned

result) s.t. $x^p = x (x-1) \cdots (x-(p-1)) g(x)$.

Comparing degrees we get deg g = 0; Comparing the

Lecture 17: Wilson's theorem

Friday, May 11, 2018

11:27 AM

leading coeff. we get gon = 1. And so

$$\chi^{2}-\chi=\chi(\chi-1)\cdots(\chi-(\gamma-1)).$$

Corollary (Wilson's theorem)

Suppose p is prime. Then $(p-1)! \equiv -1 \pmod{p}$.

Pf. By the previous theorem

$$\chi^{7} - \chi = \chi (\chi - 1) \cdots (\chi - (\gamma - 1)).$$

Compare coeff. of $x: -1 = (-1)^{P-1} (p-1)!$ in \mathbb{Z}_p .

$$\Rightarrow (7-1)! \equiv (-1)^{p} \pmod{p}$$

• if
$$p = 2$$
, then $(-1)^p = 1 = -1 \pmod{2}$

, if
$$p \neq 2$$
, then $(-1)^{p} = -1$.

Ex. Show that $\binom{P-1}{i} \equiv (-1)^i$ (mad p) if p is an odd prime.

$$\frac{Pf}{N}$$
 Since $P \mid {P \choose i}$, $(\chi+1)^p = \chi+1$ in $\mathbb{Z}_p [\chi]$.

As Z is an integral domain, Z [X] is an integral domain.

So it has the conceletion property. Hence

$$7-1$$
 $7-1$ $7-2$ $1+1$ $7-1$ $(x+1) = x - x + \cdots + (-1) x + \cdots + 1 \cdot Compring$

Lecture 17: Irreducible polynomials in F[x]

Friday, May 11, 2018 11:35 Al

coeff. of
$$x^i$$
 we get $\binom{P-1}{i} \stackrel{P}{=} (1) = (1)$ as $2|P+1$.

Let's go back to the study of irreducible polynomials:

Lemma. Suppose F is a field. Then fixeF[x] is irreducible if and only if deg f>0 and f cannot be written as a product of two non-constant polynomials.

And if f(x) = g(x) h(x), then either $g(x) \in U(F(x)) = F \setminus 20$ or $h(x) \in U(F(x)) = F \setminus 20$; and claim follows.

(≥) deg f >0 ⇒ f≠0 and f¢ F\208 = U(F[x])

Since F is an integral domain, FIXI is an integral domain.

Hence for is not a zero-divisor.

f(x) = g(x) h(x) implies either $g(x) \in F$ or $h(x) \in F$. As $f \neq 0$, $g \neq 0$ and $h \neq 0$. Hence either $g \in F \setminus \{0\}$ or $h \in F \setminus \{0\}$. Since

Lecture 17: Irreducible

Friday, May 11, 2018 2:

U(F[x]) = F\ 203, either g & U(F[x]) or heU(F[x])

and claim follows.

Ex. 2x is irreducible in Q[x], but 2x is not irreducible in Z[x]

Solution... deg 2x > 1

. $2x = g(x) h(x) \implies 1 = \deg g + \deg h$ \implies either $\deg g = 0$ or $\deg h$ And so 2x is irredu. in Q[x].

• 2X = (2)(X), $2 \notin U(\mathbb{Z}[X]) = U(\mathbb{Z}) = \frac{1}{2} \pm \frac{1}{3}$ and $X \notin U(\mathbb{Z}[X]) = U(\mathbb{Z}) = \frac{3}{2} \pm \frac{1}{3}$.

Ex. χ^2+1 is reducible in C[x]; but χ^2+1 is irreducible in $\mathbb{R}[X]$.

Solution. $x^2+1=(x+i)(x-i)$ and $x\pm i$ are not constant And so x^2+1 is not irreducible in C[x].

. Since deg $(x^2+1) \ge 1$ and R is a field, it is enough

Lecture 17: Zeros and irreducibility

Friday, May 11, 2018 2:

to show χ_{+1}^2 cannot be written as a product of two

non-constant polynomials. Suppose to the contrary that

 $\chi^2+1=g(x)h(x)$ and deg g, deg h ≥ 1 .

Then $2 = \deg g + \deg h \ge 1 + 1 = 2$. Since equality

holds, deg g = deg h = 1. Hence g has a zero in \mathbb{R} .

Therefore x^2+1 should have a zero in \mathbb{R} , which is

a contradiction; because $\forall \alpha \in \mathbb{R}$, $\alpha^2 + 1 \ge 1$.

Lemma. Suppose F is a field, fix & F[x], deg +>2,

and I has a zero ce F. Then I is reducible in Fixz.

Pf. By the factor theorem, ∃ qon ∈ FIXI s.t.

$$f(x) = (x-c) q(x).$$

So deg $f = 1 + \deg q$; hence $\deg q = \deg f - 1 \ge 1$.

Therefore f can be written as a product of two

non-constant goly. which implies I is reducible in

FIXJ. 🛢

Lecture 17: Irreducibility of degree 2 and 3

Friday, May 11, 2018

2:53 PM

In the next lecture we will show that the converse hold if $2 \le \deg f \le 3$.

The converse does not hold in general; for instance $(x^2+1)(x^2+1)$ is not irreducible in RTXI, and it has no zero in R.