Lecture 16: More thorough study of ring of polynomials Wednesday, May 9, 2018 11:16 AM

In the previous lecture we saw the importance of having certain methods of finding at if a given polynomial is irreducible or not. So we focus on ring of polynomials for now. Recall $\operatorname{deg}\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right)=n$ if $a_{n} \neq 0$ and $\operatorname{deg}(0)=-\infty$.

Then we proved:
Lemma. Suppose D is an integral domain. Then

$$
\forall f, g \in D I x \beth, \quad \operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g .
$$

We were proving the following:
Proposition. Suppose D is an integral domain. Then
(1) $D[x]$ is an integral domain.
(2) $U(D[x])=U(D)$; in particular, if F is a field, then $U(F[x])=\{f(x) \in F[x] \mid \operatorname{deg} f=0\}=F \backslash\{0\}$.

Pf. (1) Suppose to the contrary $f, g \in D I x]\{0\}$ and $f g=0$.
Then $\operatorname{deg} f, \operatorname{deg} g \in \mathbb{Z}^{Z_{0}}$, and $\operatorname{deg}(f g)=-\infty$, which contradicts

Lecture 16: Ring of polynomials
Wednesday, May 9, 2018 11:40 AM
the previous lemma.
(2) Suppose $f(x) \in U(D[x])$. So $\exists g(x) \in D[x]$ st.

$$
f(x) \cdot g(x)=1
$$

Hence $\operatorname{deg} f g=\operatorname{deg} 1=0$, which implies

$$
0=\operatorname{deg} f+\operatorname{deg} g ; \text { and so } \operatorname{deg} f=\operatorname{deg} g=0
$$

Hence $f(x)=a_{0} \in D$ and $g(x)=b_{0} \in D$ and $a_{0} b_{0}=1$. therefore $a_{0} \in U(D)$; this implies $U(D[x I) \subseteq U(D)$.
. Since D is a subring of $D[x], U(D) \subseteq U(D[x])$. (i)
(I) and (II) imply $U(D)=U(D[x])$.

Ex.。 $U(\mathbb{Z}[x])=U(\mathbb{Z})=\{ \pm 1\}$

$$
\text { . } U(\mathbb{Q}[x])=U(Q)=Q \backslash\{0\}
$$

Ex. $\ln \mathbb{Z}_{16}[x]$, there are some non-constant units:

$$
1-2 x \in U\left(\mathbb{Z}_{16}[x]\right)
$$

Solution. $1=1-(2 x)^{4}=(1-2 x)\left(1+(2 x)+(2 x)^{2}+(2 x)^{3}\right)$.
The following is a good exercise:

Lecture 16: Factor theorem
$a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in U(R[x]) \Longleftrightarrow a_{0} \in U(R)$ and a_{1}, \ldots, a_{n} are nilpotent that means $a_{i}^{m}=0$.
\Leftrightarrow You can prove. \Leftrightarrow more tools are needed.
Theorem. Suppose F is a field, $c \in F, f(x) \in F[x]$. Then $\exists q(x) \in F[x]$ st. $f(x)=(x-c) q(x)+f(c)$.

In particular, c is a zero of f if and only if $\exists g(x) \in F[x]$ st. $f(x)=q(x)(x-c)$.

PP. By the long division, $\exists g(x), r(x) \in F[x]$ st.
$f(x)=g(x)(x-c)+r(x)$ and $\operatorname{deg} r<\operatorname{deg} x-c=1$. And so $r(x)$ is a constant polynomial. Evaluating at c we get

$$
f(c)=\underbrace{q(c)(c-c)}_{0}+r(c) \Rightarrow r(c)=f(c) \text {. }
$$

Since $r(x)$ is constant, $r(x)=f(c)$. And so

$$
\begin{equation*}
f(x)=g(x)(x-c)+f(c) . \tag{I}
\end{equation*}
$$

If c is a zero of f, then $f(c)=0$. Therefore by (I) $f(x)=g(x)(x-c)$.
If $f(x)=q(x)(x-c)$, then $f(c)=q(c)(c-c)=0$.

Lecture 16: Number of zeros of a polynomial Wednesday, May 9, 2018 5:03 PM

Proposition. Suppose F is a field, $f(x) \in F[x]$ is a polynomial of degree $n>0$.
(a) If $c_{1}, \ldots, c_{m} \in F$ are distinct zeros of f, then $\exists g(x) \in F_{I x I}$ st. $f(x)=\left(x-c_{1}\right) \cdots\left(x-c_{m}\right) g(x)$.
(b) $f(x)$ has at most n distinct zeros in F.

Pf. (a) We proceed by induction on m.
Base of induction. $m=1$. By the factor theorem, $\exists g(x) \in F[x]$, $f(x)=\left(x-c_{1}\right) g(x)$.

Induction step. Suppose c_{1}, \ldots, c_{m+1} are distinct zeros in F of $f(x)$. Then by the induction hypothesis, $\exists g(x) \in F I x I$ st.
(I) $f(x)=\left(x-c_{1}\right) \cdots\left(x-c_{m}\right) g(x)$. And so

$$
0=f\left(c_{m+1}\right)=\underbrace{\left(c_{m+1}-c_{1}\right)}_{\neq 0} \underbrace{\left(c_{m+1}-c_{2}\right.}_{\neq 0}) \cdots \cdot(\underbrace{\left(c_{m+1}-c_{m}\right)}_{\neq 0} g\left(c_{m+1}\right)
$$

Since F has no zero-divisors, $g\left(c_{m+1}\right)=0$. Hence by the factor theorem $\exists q(x) \in F[x], g(x)=\left(x-c_{m+1}\right) q(x)$. And so by (I) $f(x)=\left(x-c_{1}\right) \cdots\left(x-c_{m}\right)\left(x-c_{m+1}\right) g(x)$.

Lecture 16: Number of zeros of a polynomial
(b) Suppose to the contrary that $\exists c_{1}, \ldots, c_{n+1}$ zeros of f.

Then by part (a), $f(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{n+1}\right) g(x)$ for same $g(x) \in F[x]$.

And so $n=\operatorname{deg} f=\operatorname{deg}\left(x-c_{1}\right)+\cdots+\operatorname{deg}\left(x-c_{n+1}\right)+\operatorname{deg} g$

$$
=n+1+\operatorname{deg} g \text {. }
$$

Therefore $\operatorname{deg} g=-1$ which is a contradiction.
Recall. Suppose Char $(R)=p>0$ is prime. Then
$f: R \rightarrow R, f(r)=r^{p}$ is a ring hoo. This is called the Frobenius map. Consider the Frob. map $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$, $f(r)=r^{p}$. Then for any $a \in \mathbb{Z}_{p}$,

$$
\begin{aligned}
& f(a)=f(\underbrace{1+\cdots+1}_{a \text { times }})=\underbrace{f(1)+\cdots+f(1)}_{a \text { times }}=\underbrace{1+\cdots+1}_{a \text { times }}=a \\
& \Rightarrow a=a .
\end{aligned}
$$

Fermat's little theorem. $\forall a \in \mathbb{Z}_{p}, a^{p}=a$.

- Before this you have been working with polynomials in your call. courses. But you mainly viewed them as functions. In this course

Lecture 16: Polynomials and functions
there is a subtle difference between a polynomial $f(x) \in F[x]$ and its underlying function. For instance x and $x^{P} \in \mathbb{Z}_{p}[x]$ are two different polynomials one of them has degree 1 and the other one has degree p, but as functions from \mathbb{Z}_{p} to \mathbb{Z}_{p}, they are equal as Fermat's little theorem implies.

