Lecture 16: More thorough study of ring of polynomials
Wednesday, Mar 9, 2018 11:16 AM
In the previous lecture we saw the importance of having certain methods
of finding out if a given polynomial is irreducible or not. So
we focus on ring of polynomials for now. Recall
deg
$$(a_n x^n + a_{n-1} x^{n-1} + ... + a_n) = n$$
 if $a_n \neq o$ and
deg $(o) = -\infty$.
Then we proved:
Lemma. Suppose D is an integral domain. Then
 $\forall f, g \in D IXI$, $deg(fg) = deg f + deg g$.
We were proving the following:
Proposition. Suppose D is an integral domain. Then
(1) D IXI is an integral domain.
(2) $U(DIXI) = U(D)$; in particular, if F is a field,
then $U(FIXI) = g$ foxe FIXI | deg f=o g = F \ So g.
Pf. (4) Suppose to the contrary f, ge DIXI \ So g and fg = o.
Then deg f, deg g $e\mathbb{Z}^{2^{\circ}}$, and deg (fg)=-∞, which contradicts

Lecture 16: Ring of polynomials
Wednesday, May 9, 2015 1:40 MM
the previous lemma.
(2) Suppose
$$f(x) \in U(D[X])$$
. So $\exists g(x) \in D[X]$ s.t.
 $f(x) \cdot g(x) = 1$.
there $deg fg = deg 1 = 0$, which implies
 $o = deg f + deg g$; and So $deg f = deg g = 0$.
Hence $f(x) = a$, $e D$ and $g(x) = b$, $e D$ and $a, b_0 = 1$.
therefore $a_0 \in U(D)$; this implies $U(D[XI]) \subseteq U(D)$. (I)
. Since D is a subring of D [X], $U(D) \subseteq U(D[X])$. (II)
. Since D is a subring of D [X], $U(D) \subseteq U(D[X])$. (II)
. Since D is a subring of D [X], $U(D) \subseteq U(D[X])$. (II)
. Since D is a subring of D [X], $U(D) \subseteq U(D[X])$. (II)
. $U(Q[X]) = U(Z) = \frac{8}{2} \pm \frac{13}{2}$
 $U(Q[X]) = U(Q) = Q \setminus \frac{203}{2}$
Ex. $\ln Z_{16}[X]$, there are some non-constant units:
 $1-2x \in U(Z_{16}[X])$.
Solution. $1 = 1 - (2x)^4 = (1-2x)(1 + (2x) + (2x)^2 + (2x)^3)$.
The follocsing is a good exercise :

Lecture 16: Factor theorem
Wednesday, May 3, 2018 2019

$$a_{0}+a_{1}x+...+a_{n}x^{n} \in U(Rtx1) \Leftrightarrow a_{0} \in U(R) \text{ and } a_{1},...,a_{n} \text{ are nilpotent}$$

that means $a_{1}^{m} = 0$.
 (\Leftrightarrow) You can prove. (\rightleftharpoons) more tools are needed.
Theorem. Suppose F is a field, $c \in F$, fixe F Ex1. Then
 $\exists q(x) \in Ftx1$ st. $f(x) = (x-c) q(x) + f(c)$.
In particular, c is a zero of f if and only if $\exists q(x) \in Ftx1$
st. $f(x) = q(x) (x-c)$.
Pf. By the long division, $\exists q(x), r(x) \in Ftx1$ st.
 $f(x) = q(x) (x-c) + r(x)$ and $\deg r < \deg x = 1$. And so $r(x)$
is a constant polynomial. Evaluating at c is get
 $f(c) = q(c) (c-c) + r(c) \Rightarrow r(c) - f(c)$.
Since $r(x)$ is constant, $r(x) = f(c) - f(c)$.
 $f(x) = q(x) (x-c) + f(c) = 1$. And so
 $f(x) = q(x) (x-c) + f(c) = 1$.
 $f(x) = q(x) (x-c) + f(c) = 1$.
 $f(x) = q(x) (x-c) + f(c) = 1$.
 $f(x) = q(x) (x-c) + f(c) = 1$.
 $f(x) = q(x) (x-c) + f(c) = 1$.
 $f(x) = q(x) (x-c) + f(c) = 1$.

Lecture 16: Number of zeros of a polynomial

Wednesday, May 9, 2018 5:03 PM

Proposition. Suppose F is a field,
$$f(x) \in FIDQ$$
 is a polynomial
of degree $n > 0$.
(a) If $C_1, ..., C_m \in F$ are distinct zeros of f, then $\exists g(x) \in FIXI$
st. $f(x) = (x - C_1) ... (x - C_m) g(x)$.
(b) fix has at most in distinct zeros in F.
(c) fix has at most in distinct zeros in F.
Pf. (a) we proceed by induction on m.
Base of induction. m=1. By the factor theorem, $\exists g(x) \in FIXI$,
 $f(x) = (x - C_1) g(x)$.
Induction step. Suppose $C_1, ..., C_{m+1}$ are distinct zeros in F of
 $f(x) = (x - C_1) g(x)$.
Induction step. Suppose $C_1, ..., C_{m+1}$ are distinct zeros in F of
 $f(x) = (x - C_1) \cdots (x - C_m) g(x)$. And so
 $v = f(C_{m+1}) = (C_{m+1} - C_1)(C_{m+1} - C_2) \cdots (C_{m+1} - C_m) g(C_{m+1})$
 $f(x) = x - (x - C_1) \cdots (x - C_m) g(x)$. And so
 $v = f(C_{m+1}) = (C_{m+1} - C_1)(C_{m+1} - C_2) \cdots (C_{m+1} - C_m) g(C_{m+1})$
 $f(x) = f(x) = (x - C_1) \cdots (x - C_m) g(x)$. And so
 $f(x) = f(x) - f(x) - f(x) - f(x) - f(x) - f(x) - f(x)$.

Lecture 16: Number of zeros of a polynomial
Wednesday, May 9, 2018 SIGPM
(b) Suppose to the contrary that
$$\exists c_1, \dots, c_{n+1} \ zeros of f$$
.
Then by part (a), $f(x) = (x - c_1) (x - c_2) \dots (x - c_{n+1}) g(x)$
to some $g(x) \in F[x]$.
And so $n = \deg f = \deg (x - c_1) + \dots + \deg (x - c_{n+1}) + \deg g$
 $= n + 1 + \deg g$.
Therefore $\deg g = -1$ which is a contradiction.
Recoll. Suppose Char (R) = p > 0 is prime. Then
 $f: R \rightarrow R, f(r) = r^{T}$ is a ring hom. This is called the
Frobenius map. Consider the Frob. map $f: \mathbb{Z}_p \rightarrow \mathbb{Z}_p$,
 $f(r) = r^{T}$. Then for any $a \in \mathbb{Z}_p$,
 $f(\alpha) = f(1 + \dots + 1) = f(1) + \dots + f(1) = 1 + \dots + 1 = a$
 $a + times = a + times = a + times$
 $\Rightarrow a^{2} = a$.
Termat's little theorem. $\forall a \in \mathbb{Z}_p, a^{2} = a$.
Before this you have been working with polynomials in your calc.
Courses. But you mainly viewed them as functions. In this course

Lecture 16: Polynomials and functions

Wednesday, May 9, 2018 6:11 PM

there is a subtle difference between a polynomial fox) = FIXI and its underlying function. For instance x and $x^{P} \in \mathbb{Z}_{p}[x]$ are two different polynomials one of them has degree I and the other one has degree p, but as functions from \mathbb{Z}_p to \mathbb{Z}_p , they are equal as Fermat's little theorem implies.