Recall. An integral domain D is called a Euclidean domain if $\exists N: D \rightarrow \mathbb{Z}^{20}, \quad(n \quad N(d)=0 \Leftrightarrow d=0$
(2) $\forall a \in D, b \in D \backslash\{0\}, \exists g, r \in D$,

$$
\begin{aligned}
& \cdot a=b q+r \\
& \cdot N(r)<N(b)
\end{aligned}
$$

We proved $\mathbb{Z}[i]$ and $F[x]$, where F is a field, are EDs.
Theorem. A Euclidean domain is a PID.
Pf. Suppose $I \triangleleft D$. If $I_{=0}$, then it is principal. So assume $I_{\neq 0}$.
Consider $\xi N(a) \mid a \in I, a \neq 0\}$. Since it is a nen-empty subset of \mathbb{Z}^{+}, it has a minimum. Suppose $a_{0} \in I$ is sit.

$$
N\left(a_{0}\right)=\min \{N(a) \mid a \in I, a \neq 0\} .
$$

Claim. $I=\left\langle a_{0}\right\rangle$.
pf. Since $\left.a_{0} \in I, \quad<a_{0}\right\rangle \subseteq I$.
. For $a \in I, \exists q, r \in D$ s.t. $a=a_{0} q+r$ and $N(r)<N\left(a_{0}\right)$ $\Rightarrow r=a-a_{0} q \in I$ and $\left.N(r)<N\left(a_{0}\right)\right\} \Rightarrow r=0 \Rightarrow a \in\left\langle a_{0}\right\rangle$. Since $N\left(a_{0}\right)=\min \{N(a) \mid a \in I, a \neq 0\}$

Lecture 12: Certain factors of Gaussian integers
Monday, April 30, 2018 11:12 AM
Corollary. Suppose $a^{2}+b^{2}=p$ is prime in \mathbb{Z} and $a, b \in \mathbb{Z}$. Then

$$
\mathbb{Z}[i] /\langle a+b i\rangle) \simeq \mathbb{Z} / P \mathbb{Z}
$$

Pf. Step 1. $p \not a$ and $p \times b$.
Pf. Suppose to the contrary $p \mid a$. Then either $p=0$ or $p \leq|a|$.

- If $p=0$, then $b^{2}=p$ which is a contradiction as p is prime
- If $p \leq|a|$, then $p^{2} \leq a^{2} \leq a^{2}+b^{2}=p$ which is again a contradi: as $p>1$.

Step 2. $\exists \alpha \in \mathbb{Z}$ s.t. $\alpha^{2} \equiv-1(\bmod p)$ and $a+\alpha b \equiv 0(\bmod p)$
Pf $a^{2}+b^{2}=p$ implies $\bar{a}^{2}+b^{2}=0$ in $\mathbb{Z} / p \mathbb{Z}$
since $p \nmid b, \quad b \neq 0$ in $\mathbb{Z} / p \mathbb{Z}$. As $\mathbb{Z} / p \mathbb{Z}$ is a field, $(\bar{a} / \bar{b})^{2}=-1$. So $\alpha+p \mathbb{Z}=-\bar{a} / \bar{b}$ satisfies $(*)$.

Step 3. $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z} / p \mathbb{Z}, \phi(c+i d)=c+\alpha d+p \mathbb{Z}$ a ring homomorphism.

Lecture 12: Certain factors of Gaussian integers
Monday, April 30, 2018 11:31 AM
(addition: exercise)

$$
\begin{aligned}
\phi\left(\left(c_{1}+i d_{1}\right)\left(c_{2}+i d_{2}\right)\right) & =\phi\left(\left(c_{1} c_{2}-d_{1} d_{2}\right)+i\left(c_{1} d_{2}+c_{2} d_{1}\right)\right) \\
& =\left(c_{1} c_{2}-d_{1} d_{2}\right)+\alpha\left(c_{1} d_{2}+c_{2} d_{1}\right)+p \mathbb{Z} \\
\begin{array}{l}
\phi\left(c_{1}+i d_{1}\right) \phi\left(c_{2}+i d_{2}\right)
\end{array} & =\left(c_{1}+\alpha d_{1}+p \mathbb{Z}\right)\left(c_{2}+\alpha d_{2}+p \mathbb{Z}\right) \\
& =\left(c_{1} c_{2}+\alpha^{2} d_{1} d_{2}+\alpha\left(c_{1} d_{2}+d_{1} c_{2}\right)\right)+p \mathbb{Z} \\
\left.\alpha^{2} \equiv-1(\bmod p)\right\} & =\left(c_{1} c_{2}-d_{1} d_{2}\right)+\alpha\left(c_{1} d_{2}+d_{1} c_{2}\right)+p \mathbb{Z}
\end{aligned}
$$

and claim follows.
Stop 4. ϕ is onto.
$\forall \bar{a} \in \mathbb{Z} / p \mathbb{Z}, \quad \bar{a}=a+p \mathbb{Z}=\phi(a)$.
Step 5 $a+b i \in \operatorname{ker} \phi$.
If $p(a+b i)=a+b \alpha+p \mathbb{Z}=\overline{0}$. (by step 2).
Step 6. $\operatorname{ker} \phi=\langle a+b i\rangle$.
Pf Since $\mathbb{Z}[i]$ is a E.D., it is a PID. So er $\phi=\left\langle a^{\prime}+b^{\prime} i\right\rangle$. Since $\langle a+b i\rangle \subseteq$ er ϕ, $a+b i=\left(a^{\prime}+b^{\prime} i\right)(c+d i)$ for some $c, d \in \mathbb{Z}$. Hence

Lecture 12: Certain factors of Gaussian integers
Monday, April 30, 2018 11:44 AM

$$
\Rightarrow a^{2}+b^{2}=\left(a^{2}+b^{\prime 2}\right)\left(c^{2}+d^{2}\right) \Longrightarrow\left(a^{\prime 2}+b^{\prime 2}\right)\left(c^{2}+d^{2}\right)=p .
$$

Since p is prime, either $a^{\prime 2}+b^{\prime 2}=p$ and $c^{2}+d^{2}=1$ or $a^{\prime 2}+b^{\prime 2}=1$ and $c^{2}+d^{2}=p$.

Claim. $a^{\prime 2}+b^{\prime 2} \neq 1$.
If. If $a^{\prime 2}+b^{\prime 2}=1$, then $1=\left(a^{\prime}+i b^{\prime}\right)\left(a^{\prime}-i \cdot b^{\prime}\right) \in \operatorname{ker} \phi$; this contradicts $\quad \phi(1)=1+p \mathbb{Z} \neq 0+p \mathbb{Z}$.

By the above claim, $c^{2}+d^{2}=1$. Hence $(c+i d)(c-i d)=1$, which implies $c+i d \in U(\mathbb{Z}[i])$. Therefore

$$
\begin{gathered}
\langle a+b i\rangle=\left\langle\left(a^{\prime}+b_{i}^{\prime}\right)(c+i d)\right\rangle=\left\langle a^{\prime}+b^{\prime} i\right\rangle \\
\{c+i d \in U(\mathbb{Z}[i])\}
\end{gathered}
$$

Thus er $\phi=\langle a+b i\rangle$. And so by the $1^{\text {st }}$ isomorphism theorem $\mathbb{Z}[i]_{\langle a+b i\rangle}=\mathbb{Z}[i]_{\text {er } \phi} \simeq / m \phi=\mathbb{Z} / p \mathbb{Z}$.

As we mentioned earlier, ideals were defined to extend our number theoretic techniques to rings other than \mathbb{Z}.

We start with defining prime ideals;
Def. Suppose R is a unital commutative ring. An ideal I of R is called a prime ideal if $\quad I \neq R$ and $a b \in I \Rightarrow$ either $a \in I$ or $b \in I$.

Ex. What are prime ideals of \mathbb{Z} ?
Solution. As \mathbb{Z} is a PID, any ideal of \mathbb{Z} is of the form $n \mathbb{Z}$ for some $n \in \mathbb{Z}^{\geq 0}$.

- If n is composite, then $\exists a, b \in \mathbb{Z}$ sit. $1<a, b<n, n=a b$. Hence $a b=n \in n \mathbb{Z}$, and $a \notin n \mathbb{Z}, b \notin n \mathbb{Z}$. And so $n \mathbb{Z}$ is not a prime ideal.
. If $n=1$, then $n \mathbb{Z}=\mathbb{Z}$ is not a proper ideal; and so it is not a prime ideal.
. If $n=0$, then $n \mathbb{Z}=\{0\} \nsubseteq \mathbb{Z}$, and $a b \in\{0\} \Rightarrow a b=0 \Rightarrow a=0$ or $b=0 \Rightarrow a \in\{0\}$ or $b \in\{0\}$. \mathbb{Z} is integral domain

Lecture 12: Prime ideals
Monday, April 30, 2018 2:42 PM
and so $\{0\}$ is a prime ideal.
-If $n=p$ is prime, then $p \mathbb{Z}$ is a proper ideal and $a b \in p \mathbb{Z} \Rightarrow p|a b \Rightarrow p| a$ or $p \mid b \Rightarrow a \in p \mathbb{Z}$ or $b \in p \mathbb{Z}$.

Euclid's
lemma
And $p \mathbb{Z}$ is a prime ideal.
Hence an ideal I of \mathbb{Z} is prime if and only if $I=\{0\}$ or $I=p \mathbb{Z}$ for some prime p.

Remark. The Euclid's lemma was the main source of the given definition of prime ideals.

In the next lecture we will prove:
Proposition. Suppose R is a unital commutative ring and $I \triangleleft R$.
Then I is a prime ideal $\Leftrightarrow R / I$ is an integral domain.

