Lecture 11: A factor ring of Gaussian integers
Product April 27, 2013 10.59 AM
We were proving
$$\mathbb{Z} [1]/_{(3+2i)} \simeq \mathbb{Z}/_{13\mathbb{Z}}$$
; we defined
 Θ : $\mathbb{Z} [1] \rightarrow \mathbb{Z}/_{13\mathbb{Z}}$, $\Theta(a+bi) = a+5b+13\mathbb{Z}$ and proved
 Θ is an onto ring homomorphism and $3+2i \in \ker \Theta$.
Suppose $a+bie \ker \Theta$. Since $\mathbb{Q} [1]$ is a field, $\exists a', b' \in \mathbb{Q}$
 st . $\frac{a+bi'}{3+2i} = a'+b'i = q_1 + q_2i' + e_1 + e_2i'$ for some
 $q_1, q_2 \in \mathbb{Z}$ and $-\frac{1}{2} \leq e_1, e_2 \leq \frac{1}{2}$. Hence
 $a+bi = (3+2i)(q_1+q_2i) + (3+2i)(e_1+e_2i)$
 $\stackrel{\text{in }}{\longrightarrow} \Gamma \in \mathbb{Z} [1]$ and $|\Gamma|^2 = |3+2i|^2 |e_1+e_2i|^2 \leq 13 \times (\frac{1}{4}+\frac{1}{4}))$
 $= 6\cdot5$.
As $3+2i$, $a+bi \in \ker \Theta$, $r = r_1 + r_2 i \in \ker \Theta$; and
 $r_1^2 + r_2^2 \leq 6.5$. And so $|r_1| \leq 2$. Therefore
 $|3||r_1 + 5r_2$ $g \Rightarrow r_1 + 5r_2 = 0$
 $|r_1|| \leq 2$
 $find so by $\bigoplus r_2 = 0$.
Therefore $a+bi = (3+2i)(q_1+q_2i)e_3+2i\gamma$.$

Lecture 11: Euclidean domains
ready, April 27, 2018 11:16 AM
In the examples that are have seen about Z, Q[X], and Z[i]
are saw the importance of having a generalized division algorithm.
So are make it more concrete now:
Def. An integral domain D is called a Euclidean Domain (ED)
if I N:D
$$\rightarrow \mathbb{Z}^{\circ}$$
 set. NG1=0 \Leftrightarrow d=0
 $\forall a \in D$, $b \in D \setminus \{2,3\}$, I q, reD set.
 $a = bq + r$ and $N(r) < N(b)$. (*)
Proposition. Z is a Euclidean Domain.
IF. Let N: Z $\rightarrow \mathbb{Z}^{\circ}$, N(a)=1a1. Then N(d)=0 \Leftrightarrow d=0.
 $\forall a \in \mathbb{Z}, b \in \mathbb{Z} \setminus \{2,0\}$, by the division algorithm I q, $r \in \mathbb{Z}$ set.
 $Q(a = bq + r)$ and $(2) \circ \leq r < 1b1$. Hence
 $N(r) = |r| = r < |b| = N(b)$; and so Z is a E:D. **B**
Proposition. Suppose F is a field. Then the ring of polynomials F[X]
cyth coefficients in F is a Euclidean domain.

Lecture 11: F[x] is a ED Friday, April 27, 2018 1:51 PM $\frac{\Pi}{2} \cdot deg \left(a_n x_{n+1}^n + a_{n-1} x_{n+1}^{n-1} + \dots + a_n \right) = n \quad \text{if} \quad a_n \neq 0$ $deg(0) = -\infty$. Let N: F[x] $\rightarrow \mathbb{Z}^{\geq \circ}$, N(pm) = 2 with the For any a cx) e FIXI and b (x) e FIXI \ 203, by strong induction on deg (a) we prove the existence of q (x) and rex. Before we start proof of strong induction, let's consider the following two cases: • If acx = o, then qcx = o = rcx satisfy (*) (I) . If day a < degb, then q(x)=0 and rex) = arx satisfy (*). Base of induction for a = 0. deg a = 0; if deg b > 0, we are done by (I). If deg b=0, then $b \in F \setminus \{20\}$; and so $q = \frac{\alpha}{L}$, r=0 satisty (x).

Lecture 11: F[x] is a ED. Friday, April 27, 2018 11:27 AM . Strong induction step. Suppose $Q(x) = C_n x_n^n + C_{n-1} x_n^{n-1} + \dots + C_o$, $C_n \neq o$, and $b(x) = d_m x^m + d_{m-1} x^{m-1} + \dots + d_0, d_m \neq 0.$ If n < m, then q(x) = 0 and r(x) = a(x) satisfy (*). If $n \ge m$, then $a(x) = \frac{c_n}{dx} x^{n-m} b(x)$ (getting rid of the leading term cnx".) $= (c_n x^n + c_{n-1} x^{n-1} + \dots + c_0)$ $-\left(c_{n}x^{n}+\frac{c_{n}}{J_{1}}\cdot d_{m-1}x^{n-1}+\cdots+\frac{c_{n}}{J_{n}}d_{o}x^{n-m}\right)$ $= \left(C_{n-1} - \frac{C_n d_{m-1}}{d_{m-1}}\right) \chi^{n-1} + loover deg. \text{ terms}$ \Rightarrow deg $(a(x) - \frac{c_n}{L} x^{n-m} b(x)) < deg a(x)$ By the strong induction hypothesis, $\exists q', r \in F[x]$ s.t. $a(x) - \frac{c_n}{d_n} x^{n-m} b(x) = q'(x) \cdot b(x) + r(x)$ and N(r) < N(b). And so $\alpha(x) = \left(\frac{c_n}{dm} x + q'(x)\right) \cdot b(x) + rox and N(r) < N(b).$

Lecture 11: The ring of Gaussian integers is a ED
Proday, April 22, 2018 11.57 AM
Proposition Z [1] is a ED.
Pre-Let N: Z [1]
$$\rightarrow$$
 Z²⁰, N(a+bi) = a²+b².
For a+bi e Z [1] and c+di e Z [1] \ 80³, Since Q [1] is a field,
I a', b' e Q st. $a+bi = a'+b'i$. So I $q,q' \in \mathbb{Z}$ and
 $e, e' \in \mathbb{Q}$ st. $a' = q + e$, $b' = q' + e'$, $|e|, |e'| \leq \frac{1}{2}$.
And so $a+bi = (q+q'i)(c+di) + (e+e'i)(c+di)$
Since $a+bi, q+q'i$, and $c+di \in \mathbb{Z}$ [1], $r \in \mathbb{Z}$ [1].
And N(r) = $|(e+e'i)(c+di)|^2 = |e+e'i|^2 |c+di|^2$
 $= (e^2 + e'^2)(c^2 + d^2) \leq (\frac{4}{4} + \frac{1}{4}) \operatorname{NCc} + di) \leq \frac{1}{2} \operatorname{NCc} + di$.
Since $c+di \neq o$, N ($c+di$) $\neq o$ and $\frac{1}{2} \operatorname{Ncc} + di$.
N(r) < N($c+di$).
In the next lecture we will prove
Theorem. A Euclidean Domain is a PID.
We call consider the "snallest" element of I and show I is
generated by that element.