Homework 9

1. (a) Prove that $x^{3}-x+1$ is irreducible in $\mathbb{Z}_{3}[x]$.
(b) Prove that $\mathbb{Z}_{3}[x] /\left\langle x^{3}-x+1\right\rangle$ is a field.
(c) Prove that there is a field F that has 27 elements, and it has a zero α of $x^{3}-x+1$.
(Hint. For part (c), use part (b) and long division.)
2. Suppose $f(x)=x^{5}-6 x^{4}+30 x+12$.
(a) Prove that $f(x)$ is irreducible in $Q[x]$.
(b) Suppose $\alpha \in \mathbb{C}$ is a zero of f. Prove that

$$
\left\{a_{0}+a_{1} \alpha+\cdots+a_{4} \alpha^{4} \mid a_{0}, \ldots, a_{4} \in \mathbb{Q}\right\}
$$

is a field.
(c) Prove that $1, \alpha, \ldots, \alpha^{4}$ are linearly independent over \mathbb{Q}; that means: if $a_{0}+a_{1} \alpha+\cdots+a_{4} \alpha^{4}=0$ for some $a_{i} \in \mathbb{Q}$, then $a_{0}=a_{1}=\cdots=a_{4}=0$.
3. Suppose p is an odd prime. Prove that $\underbrace{\text {. }}_{f(x) \text {. } x^{p-1}-x^{p-2}+\cdots+x^{2}-x+1}$ is irreducible in $Q[x]$. (Hint. Consider $f(-x)$.)

Homework 9
Wednesday, May 30, 2018
4. Let $\alpha=\sqrt{1+\sqrt{3}}$.
(a) Prove that $x^{4}-2 x^{2}-2$ is a minimal polynomial of α over \mathbb{Q}.
(b) $\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+a_{3} \alpha^{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Q}\right\}$ is a field.
5. Show that there is a finite field of order 25.
(Hint. Find a degree 2 irreducible polynomial in $\mathbb{Z}_{5}[x]$.)

