Homework 9

1. (a) \mathbb{Z}_{3} is a field, $x^{3}-x+1$ has degree 3 . $x^{3}-x+1$ is irreducible in $\mathbb{Z}_{3}[x]$ iff $x^{3}-x+1$ has no root in \mathbb{Z}_{3}.

Since $0^{3}-0+1=1 \neq 0$

$$
\begin{aligned}
& 1^{3}-1+1=1 \neq 0 \quad \text { in } \mathbb{Z}_{3} \\
& 2^{3}-2+1=7 \neq 0
\end{aligned}
$$

$\Rightarrow x^{3}-x+1$ has no root in \mathbb{Z}_{3}.
(b) $\mathbb{Z}_{3}[x]$ is a PID and $x^{3}-x+1$ is irreducible in $\mathbb{Z}_{3}[x]$
$\Rightarrow\left\langle x^{3}-x+1\right\rangle$ is maximal ideal
$\left.\Rightarrow \mathbb{Z}_{3} /<x^{3}-x+1\right\rangle$ is a field
(c) We know that $\mathbb{Z}\left[[x] /<x^{3}-x+17\right.$ has $3^{3}=27$ elements.

Consider the map $\phi_{\alpha}: \mathbb{Z}_{3}[x] \longrightarrow \mathbb{C}$

$$
g(x) \longmapsto g(a)
$$

$\operatorname{Im} \phi_{\alpha}=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{i} \in \mathbb{Z}_{3}\right\}$.
Clearly $c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \in \operatorname{Im} \phi_{\alpha}$.
Now for any $g(x) \in \mathbb{Z}_{3}[x] . \quad g(x)=p(x)\left(x^{3}-x+1\right)+r(x), p(x), r(x) \in \mathbb{Z}_{3}[x] . \operatorname{deg} r(x) \leq 2$.
Then $g(\alpha)=p(\alpha) \cdot 0+r(\alpha) \in\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{i} \in \mathbb{Z}_{3}\right\}$.

- 2 is a root of $x^{3}-x+1 \Rightarrow\left\langle x^{3}-x+1\right\rangle \leqslant \operatorname{ker} \phi_{\alpha}$.

But $1 \notin \operatorname{ker} \phi_{2} \Rightarrow \operatorname{ker} \phi_{2} \neq \mathbb{Z}_{3}[x] \Rightarrow\left\langle x^{3}-x+1\right\rangle=\operatorname{ker} \phi_{2}$.

- By dst Isomorphism Theorem, $\mathbb{Z}_{3}[x] /\left\langle x^{3}-x+1\right\rangle \cong\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{i} \in \mathbb{Z}_{3}\right\}$.
$\Rightarrow\left\{c_{0}+c_{1} 2+c_{2} \alpha^{2} \mid c_{i} \in \mathbb{Z}_{3}\right\}$ is field of 27 elements, with root of $x^{3}-x+1$, which is 2 .

2. (a). Consider 3, prime number

$$
3|6,3| 30,3 \mid 12 \text {. but } 3^{2}+12
$$

$\Rightarrow f(x)$ is irreducible by Eisenstein criteria.
(b). Consider the evaluation map $\left.\phi_{\alpha}:(x]\right] \longrightarrow \mathbb{C}$

$$
g(x) \longmapsto g(2)
$$

$f(x)$ has α as root and $f(x)$ is irreducible

$$
\Longrightarrow \operatorname{ker} \phi_{2}=\langle f(x)\rangle
$$

By the main theorem of evaluation map, we have since deg $f(x)=5$
$\operatorname{Im} \phi=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3}+c_{4} \alpha^{4} \mid c_{i} \in Q\right\}$ and the image is a field.
(c). Suppose we have $a_{0}+a_{1} \alpha+\cdots+a_{4} \alpha^{4}=0, a_{i} \in Q$.

Consider $g(x)=a_{0}+a_{1} x+\cdots+a_{4} x^{4}, g(2)=0$ by assumptim.

$$
\Rightarrow g(x) \in \operatorname{ker} \phi_{2}=\langle f(x)\rangle \Rightarrow g(x)=f(x) \cdot h(x)
$$

But $\operatorname{deg} g(x) \leqslant 4<\operatorname{deg} f(x)=5$
\Rightarrow the only possibility is that $g(x)=h(x)=0$

$$
\Rightarrow a_{i}=0 . \quad i=0, \cdots, 4 .
$$

3. $f(x)$ is irreducible in $\theta[x]$ iff $f(-x)$ is irreducible iff $f(-(x+1))$ is irreducible.

$$
\begin{aligned}
f(-(x+1)) & =(x+1)^{p-1}+(x+1)^{p-2}+\cdots+(x+1)+1 \\
& =\frac{1-(1+x)^{p}}{1-(1+x)}=x^{p-1}+\binom{p}{1} x^{p-2}+\cdots+\binom{p}{p-2} x+\binom{p}{p-1}
\end{aligned}
$$

$P \left\lvert\,\binom{ p}{i}\right.$ but $p^{2}+\binom{p}{p-1}$
By Eisensecin's criteria, it's irreducible.

Another way of writting 3 :
$f(x)$ is irreducible iff $f(-x)$ is irreducible.
Let $g(x)=f(-x)=x^{p-1}+x^{p-2}+\cdots+x+1$.
As we did in lecture, $g(x)=\frac{x^{p}-1}{x-1}$

$$
g(y+1)=\frac{(y+1)^{p}-1}{(y+1)-1}=\frac{y^{p}+\left(\begin{array}{l}
p
\end{array}\right) y^{p-1}+\cdots+\binom{p}{p-1} y}{y}=y^{p-1}+\binom{p}{1} y^{p-2}+\cdots+\binom{p}{p-1}
$$

$g(y+1)$ is irreducible by Eisenstein's criteria. $\left(P \left\lvert\,\binom{ p}{i} \quad 1 \leq i \leq p-1\right., p^{2} \nmid\binom{p}{p-1}\right)$.
Suppose $g(x)$ is reducible, then
$g(x)=g_{1}(x) g_{2}(x)$, with dey $g_{i}(x) \geqslant 1$.
$\Longrightarrow g(y+1)=g_{1}(y+1) g_{2}(y+1)$ with $d e y g_{i}(y+1) \geqslant 1$, contradiction.
$\Rightarrow g(x)=f(-x)$ is irreducible
$\Rightarrow f(x)$ is irreducible.
4. (a)

$$
\begin{aligned}
2^{4}-2 \alpha^{2}-2 & =(\sqrt{1+\sqrt{3}})^{4}-2(\sqrt{1+\sqrt{3}})^{2}-2 \\
& =(1+\sqrt{3})^{2}-2(1+\sqrt{3})-2=1+2 \sqrt{3}+3-2-2 \sqrt{3}-2=0
\end{aligned}
$$

$\Rightarrow 2$ is a root of $x^{4}-2 x^{2}-2$
By Eisensecin's criteria, we notice that $2 \mid 2$ but $2^{2} \nmid 2$.
$\Rightarrow x^{4}-2 x^{2}-2$ is irreducible
$\Rightarrow x^{4}-2 x^{2}-2$ is minimal polynomial
(b) As usual, consider the evaluation map ϕ_{2} at 2 . $x^{4}-2 x^{2}-2$ is irreducible and admits 2 as a root

$$
\Rightarrow \operatorname{ker} \phi_{\alpha}=\left\langle x^{4}-2 x^{2}-2\right\rangle
$$

By the main theorem of evaluation map and the fact that dey $x^{4}-2 x^{2}-2=4$. We have that $\operatorname{Im} \phi=\left\{a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+a_{3} \alpha^{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Q}\right\}$ is a field.
5. $x^{2}+2$ is irreducible in $\mathbb{Z}_{5}[x]$ as it has no root
$\Rightarrow \mathbb{Z}_{5}[x] /\left\langle x^{2}+2\right\rangle$ is a field with $5^{2}=25$ elements.

