Homework 9
5. (A) Z₃ is a field,
$$x^2 - x + 1$$
 has degree 3.
 $x^3 - x + 1$ is irreducible in Z₃5×1 iff $x^3 - x + 1$ has no root in Z₃.
Since $0^3 - 0 + 1 = 1 + 0$ in Z₃
 $2^3 - 1 + 1 = 1 + 0$ in Z₃
 $2^3 - x + 1 = 7 + 0$
 $\Rightarrow x^3 - x + 1$ has no root in Z₃.
(b) Z₃5×1 is a PED and $x^3 - x + 1$ is irreducible in Z₃5×1
 $\Rightarrow \langle x^3 - x + 1 - 7 \Rightarrow 0$
 $\Rightarrow \langle x^3 - x + 1 - 7 \Rightarrow 0$
 $\Rightarrow \langle x^3 - x + 1 - 7 \Rightarrow 0$
 $\Rightarrow \langle x^3 - x + 1 - 7 \Rightarrow 0$
 $\Rightarrow \langle x^3 - x + 1 - 7 \Rightarrow 0$
 $\Rightarrow \langle x^3 - x + 1 - 7 \Rightarrow 0$
 $\Rightarrow \langle x^3 - x + 1 - 7 \Rightarrow 0$ A field
(c) We know that Z₃5×1/2 has $3^3 = 2^7$ elements.
Consider the map $\varphi_a : Z_3(x_1) \longrightarrow C$
 $g(x_2) \longrightarrow g(a)$
 $\cdot \text{Im} \varphi_a = \{c_0 + c_1 a + c_2 a^2 \mid c_1 \in \mathbb{Z}_3 \}$.
Clearly $c_0 + c_1 a + c_2 a^2 \in \text{Im} \varphi_a$.
Now for any $g(x_2) \in Z_3[x_1]$. $g(x_2) = p(x_2(x^3 - x + 1) + r(x_3, p(x_3), r(x_3) = \mathbb{Z}_3[x_1], degres) \le 2$
Then $g(a_2) = p(a_3 + 0 + r(a_3) = p(x_2(x^3 - x + 1) + r(x_3, p(x_3), r(x_3) = \mathbb{Z}_3[x_1], degres) \le 2$
Then $g(a_2) = p(a_3 + 0 + r(a_3) = p(x_2(x^3 - x + 1) + r(x_3, p(x_3), r(x_3) = \mathbb{Z}_3[x_1], degres) \le 2$
Then $g(a_2) = p(a_3 + 0 + r(a_3) = p(x_2(x^3 - x + 1) + r(x_3, p(x_3), r(x_3) = \mathbb{Z}_3[x_1], degres) \le 2$
Then $g(a_2) = p(a_3 + 0 + r(a_3) = p(x_2(x^3 - x + 1) - r(x_3, p(x_3), r(x_3) = \mathbb{Z}_3[x_1], degres) \le 2$
Then $g(a_2) = p(a_3 + 0 + r(a_3) = p(x_2(x^3 - x + 1) - r(x_3, p(x_3), r(x_3) = \mathbb{Z}_3[x_3], degres) \le 2$
 $x_3 + x_4 + x_4 + x_5 + x_$

By the main theorem of evaluation map, we have since deg
$$f(x) = S$$

Im $\phi = \int c_0 + c_1 a + c_2 a^2 + c_3 a^3 + c_4 a^4 | c_i \in Q \}$ and the image is a field.
(c). Suppose we have $A_0 + A_1 a + \dots + A_4 a^4 = 0$, $A_i \in Q$.
Consider $g(x) = A_0 + A_1 a + \dots + A_4 x^4$, $g(a) = 0$ by assumption.
 $\Rightarrow g(x) \in \ker \phi_a = \langle f(x) = 5 \rangle$
But deg $g(x) \in 4 c$ deg $f(x) = 5$
 \Rightarrow the only possibility is that $g(x) = h(x) = 0$
 $\Rightarrow A_i = 0$. $i = 0, \dots, 4$.

3.
$$f(x)$$
 is irreducible in $O[x]$ iff $f(-x)$ is irreducible iff $f(-(x+1))$ is irreducible.
 $f(-(x+1)) = (x+1)^{p-1} + (x+1)^{p-2} + \dots + (x+1) + 1$
 $= \frac{1 - (1+x)^{p}}{1 - (1+x)} = x^{p-1} + {p \choose 1} x^{p-2} + \dots + {p \choose p-1} x + {p \choose p-1}$
 $P \mid {p \choose i}$ but $P^{2} + {p \choose p-1}$
By Eisenstein's criteria, it's irreducible.

Another way of writting 3:

$$f(x)$$
 is irreducible iff $f(-x)$ is irreducible.
Let $g(x) = f(-x) = x^{p-1} + x^{p-v} + \dots + x + 1$.
As we did in lecture, $g(x) = \frac{x^{p-1}}{x-1}$
 $g(y+1) = \frac{(y+1)^{p-1}}{(y+1)-1} = \frac{y^{p+1}(1)y^{p+1} + \dots + (\frac{1}{p-1})^{p-1} + \dots + (\frac{1}{p-1})}{y} = y^{p+1} + (\frac{1}{p}) y^{p-1} + \dots + (\frac{1}{p-1}).$
 $g(y+1)$ is irreducible by Eisenstein's criteria. $(p|[\frac{1}{p}]) = x^{p-1}(\frac{1}{p-1})$.
Suppose $g(x)$ is reducible, then
 $g(x) = g_1(x) g_1(x)$, with deg $g_1(x) \ge 1$.
 $\Rightarrow g(y+1) = g_1(y+1) g_2(y+1)$ with deg $g_1(y+1) \ge 1$, contradiction.
 $\Rightarrow g(x) = f(-x)$ is irreducible
 $\Rightarrow f(x)$ is irreducible.

4. (a)
$$\partial_{+}^{+} - 2a^{2} - 2 = (\sqrt{1+15})^{+} - 2(\sqrt{1+15})^{2} - 2$$

 $= (1+15)^{2} - 2(1+15) - 2 = 1+2\sqrt{3}+3-2-2\sqrt{5}-2 = 0.$
 $\Rightarrow a \text{ is a root of } x^{4} - 2x^{2} - 2$
By Eisenseein's criteria, we notice that $2 | 2 \text{ bnt } 2^{2} | 2.$
 $\Rightarrow x^{4} - 2x^{2} - 2$ is irreducible
 $\Rightarrow a^{4} - 2x^{2} - 2$ is minimal polynomial
(b) As usual, consider the evaluation map ϕ_{a} at $a.$
 $x^{4} - 2x^{2} - 2$ is irreducible and admits a as a root
 $\Rightarrow \text{ker } \phi_{a} = 2 x^{4} - 2x^{2} - 27$
By the main theorem of evaluation map and the fact that deg $x^{4} - 2x^{2} - 2 = 4.$
We have that $\text{Im}\phi = \{a_{0} + a_{1}d + a_{2}d^{2} + a_{3}d^{3} | a_{0}, a_{1}, a_{2}, a_{3} \in Q\}$ is a field.

5. x^2+z is irreducible in $\mathbb{Z}_5[x]$ as it has no root $\Rightarrow \mathbb{Z}_5[x]/_{(x^2+z^2)}$ is a field with $5^2=z5$ elements.