Homework 8

1. Prove that the following polynomials are irreducible.
(a) $x^{n}-12 \in \mathbb{Q}[x]$ if $n \geq 2$.
(b) $x^{3}-3 x^{2}+3 x+4 \in \mathbb{Q}[x]$
(c) We are told that $x^{P}-x+a$ is irreducible in $\mathbb{Z}_{p}[x]$ if p is prime and $a \in \mathbb{Z}_{p} \backslash\{0\}$. Use this fact only for this part of this problem.

$$
x^{5}-10 x^{3}+25 x^{2}-51 x+2017 \in \mathbb{Q}[x] .
$$

(d) $x^{4}+3 x^{3}+27 x-12 \in \mathbb{Q}[x]$.
(e) $x^{5}-x+1 \in \mathbb{Z}_{3}[x]$
(First show it has no zero in \mathbb{Z}_{3}. Next you can use the following fact without proof: the only manic degree 2 polynomials in $\mathbb{Z}_{3}[x]$ that do not have a zero in \mathbb{Z}_{3} are $x^{2}+1, x^{2}+x-1$, and $\left.x^{2}-x-1.\right)$
(f) $x^{5}+2 x+4 \in \mathbb{Q}[x]$
(Use part (e).)

Homework 8
Wednesday, May 23, 2018 8:33 AM
2. Prove that $\mathbb{Z}_{3}[x] /\left\langle x^{5}-x+1\right\rangle$ is a field of order 3^{5}.
(Hint. (1) Use problem 1(e) to show it is a field.
(2) Use long division to show any element of this ring has a unique expression of the form:

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\left\langle x^{5}-x+1\right\rangle
$$

for some $a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{Z}_{3}$.)

