Homework 8
Wednesday, May 23, 2013 BOAM
1. Prove that the following polynomials are irreducible.
(a)
$$x^{n} - 12 \in Q[X]$$
 if $n \ge 2$.
(b) $x^{3} - 3x^{2} + 3x + 4 \in Q[X]$
(c) We are told that $x^{p} - x_{+}a$ is irreducible in $\mathbb{Z}_{p}[X]$ if
p is prime and $a \in \mathbb{Z}_{p} \setminus sas$. Use this fact only for this part
of this problem.
 $x^{5} - 10 x^{3} + 25 x^{2} - 51 x + 2017 \in Q[X]$.
(d) $x^{4} + 3x^{3} + 27 x - 12 \in Q[X]$.
(e) $x^{5} - x + 1 \in \mathbb{Z}_{3}[X]$
(First show it has no zero in \mathbb{Z}_{3} . Next you can use the
following fact without proof: the only monic degree 2
polynomials in $\mathbb{Z}_{3}[X]$ that do not have a zero in \mathbb{Z}_{3} are
 $x^{2} + 1$, $x^{2} + x - 1$, and $x^{2} - x - 1$.)
(I) $x^{5} + 2x + 4 \in Q[X]$

Homework 8 Wednesday, May 23, 2018 8:33 AM 2. Prove that $\mathbb{Z}_3[x]/(x^5-x+1)$ is a field of order 3^5 . (<u>Hint</u>. (1) Use problem 1 (e) to show it is a field. (2) Use long division to show any element of this ring has a unique expression of the form: $a_{3}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}+\langle x^{5}-x+1\rangle$ for some $a_0, a_1, a_2, a_3, a_4 \in \mathbb{Z}_3$.)