Math 103B Homework 8 Solution

Haiyu Huang May 28, 2018

- 1. Prove that the following polynomials are irreducible:
- (a) $x^n 12 \in \mathbb{Q}[x]$ if $n \ge 2$.

It suffices to show $x^n - 12$ is irreducible in $\mathbb{Z}[x]$ by Gauss's lemma. $3 \mid 12$ and $3^2 = 9 \nmid 12$ so the conclusion follows by Eisenstein Criterion applied for the prime 3.

(b) $x^3 - 3x^2 + 3x + 4 \in \mathbb{Q}[x]$.

Since a polynomial of degree two or three over a field F is reducible iff it has a root in F, it is enough to show the above polynomial f(x) has no roots in \mathbb{Q} . By rational root theorem, if it has a root r/s, then $s \mid 1$ and $r \mid 4$. Since $f(r) \neq 0$ for $r = \pm 1, \pm 2, \pm 4$, it has no rational roots.

(c) $x^5 - 10x^3 + 25x^2 - 51x + 2017 \in \mathbb{Q}[x]$.

It suffices to show the above polynomial is irreducible in $\mathbb{Z}[x]$ by Gauss's lemma. Reduce modulo 5, $x^5 - x + 2 \in \mathbb{Z}/5\mathbb{Z}[x]$ is irreducible. Hence the original polynomial is irreducible in $\mathbb{Z}[x]$.

(d) $x^4 + 3x^2 + 27x - 12 \in \mathbb{Q}[x]$.

It suffices to show the above polynomial is irreducible in $\mathbb{Z}[x]$ by Gauss's lemma. 3 divides all the coefficients except the leading coefficient and $3^2 = 9 \nmid 12$, so the conclusion follows by Eisenstein Criterion applied for the prime 3.

(e) $x^5 - x + 1 \in \mathbb{Z}/3\mathbb{Z}[x]$.

 $0^5 - 0 + 1 = 1$, $1^5 - 1 + 1 = 1$, and $2^5 - 2 + 1 = 1$ so $x^5 - x + 1$ has no roots in $\mathbb{Z}/3\mathbb{Z}$. If it were reducible, it must have a factor of a monic polynomial of degree 2 because it can not have linear factors, which give rise to roots. Since the only monic polynomial of degree 2 in $\mathbb{Z}/3\mathbb{Z}[x]$ that do not have a root in $\mathbb{Z}/3\mathbb{Z}$ are $x^2 + 1$, $x^2 + x - 1$, and $x^2 - x - 1$ and by long division none of these divide $x^5 - x - 1$, $x^5 - x + 1$ is irreducible in $\mathbb{Z}/3\mathbb{Z}[x]$.

(f) $x^5 + 2x + 4 \in \mathbb{Q}[x]$.

It suffices to show the above polynomial is irreducible in $\mathbb{Z}[x]$ by Gauss's lemma. Reduce modulo 3, $x^5 + 2x + 1 = x^5 - x + 1$ is irreducible in $\mathbb{Z}/3\mathbb{Z}[x]$ by part (e). Hence the conclusion follows.

2. Prove that $\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5 - x + 1 \rangle$ is a field of order 3^5 .

Proof. By part (e), x^5-x+1 is irreducible in $\mathbb{Z}/3\mathbb{Z}[x]$. Since $\mathbb{Z}/3\mathbb{Z}$ is a field, $\mathbb{Z}/3\mathbb{Z}[x]$ is a Euclidean domain and hence a P.I.D. So the ideal generated by the irreducible element x^5-x+1 is maximal. Hence $\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5-x+1\rangle$ is a field. By the division algorithm in $\mathbb{Z}/3\mathbb{Z}[x]$, for every $f(x) \in \mathbb{Z}/3\mathbb{Z}[x]$, $\exists ! q(x), r(x) \in \mathbb{Z}/3\mathbb{Z}[x]$ such that $f(x) = q(x)(x^5-x+1) + r(x)$, where $r(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$, and $a_i \in \mathbb{Z}/3\mathbb{Z}$. Hence

$$\overline{f(x)} = f(x) + \langle x^5 - x + 1 \rangle = r(x) + \langle x^5 - x + 1 \rangle.$$

Let ϕ be the map from $\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5-x+1\rangle$ to $(\mathbb{Z}/3\mathbb{Z})^5$ given by

$$\overline{f(x)} = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \langle x^5 - x + 1 \rangle \mapsto (a_0, a_1, \dots, a_4).$$

 ϕ is obviously surjective. Suppose $\phi(\overline{f(x)}) = \phi(\overline{g(x)})$. Then $\overline{f(x)} - \overline{g(x)} \in \langle x^5 - x + 1 \rangle = \overline{0}$. So ϕ is injective. Since ϕ is a bijective, $|\mathbb{Z}/3\mathbb{Z}[x]/\langle x^5 - x + 1 \rangle| = |(\mathbb{Z}/3\mathbb{Z})^5| = 3^5$.

Remark (Construction of field of order p^n). To construct a field of order p^n , take a monic irreducible polynomial f(x) of degree n in $\mathbb{Z}/p\mathbb{Z}[x]$, which always exist, and the field $\mathbb{Z}/p\mathbb{Z}[x]/\langle f(x)\rangle$ is a field of order p^n by the same reasoning as the above problem.