Homework 7 .

1. $x+2$ is a factor of $x^{6}-x^{4}+x^{3}-x+1$ in $\mathbb{Z}_{p}[x]$
$\Leftrightarrow-2$ is a root of $x^{6}-x^{4}+x^{3}-x+1$ in \mathbb{Z}_{p}

$$
\begin{aligned}
& \Leftrightarrow P \mid(-2)^{b}-(-2)^{4}+(-2)^{3}-(-2)+1 \\
& \Leftrightarrow P \mid 43 \\
& \Leftrightarrow P=43
\end{aligned}
$$

2. Since $1^{3}-2 \times 1+1=0$ in $\mathbb{Z}_{5} \Rightarrow 1$ is a zero of $x^{3}-2 x+1$ in \mathbb{Z}_{5}.
$\Rightarrow x^{3}-2 x+1$ has $x-1$ as a factor
Compete

$$
\begin{aligned}
& \frac{x^{2}+x-1}{x^{3}-2 x+1} \\
& \frac{x^{3}-x^{2}}{\frac{x^{2}-2 x+1}{2}}
\end{aligned} \Rightarrow x^{3}-2 x+1=(x-1)\left(x^{2}+x-1\right)
$$

Remark: Infect $x^{3}-2 x+1=(x-1)(x-2)^{2}$
2 is also a zero of $x^{3}-2 x+1$.
Yow may write $x^{3}-2 x+1=(x-2)\left(x^{2}-3 x+2\right)$ in this case.
3. Consider arbitrary degree 2 polynomial $a x^{2}+b x+v$ in $\mathbb{Z}_{2}[x]$. $a=1$ to be degree 2 , so there are $2 \times 2=4$ polynomials in total.

$$
\left\{\begin{array}{lll}
x^{2} & x & 0 \text { is zero } \\
x^{2}+x & x & 0 \text { is zero } \\
x^{2}+1 & x & 1 \text { is zero } \\
x^{2}+x+1 & v &
\end{array}\right.
$$

\Rightarrow there is 1 degree 2 polynomin in $\left.\mathbb{Z}_{2} \tau x\right]$ without zero

- Similarly, there are $2 \times 2 \times 2=8$ degree 3 polynomials in \mathbb{Z}_{2} [x].

4. (a). $f(x):=x^{4}-2 x^{2}-2$.

$$
f(2)=(1+\sqrt{3})^{2}-2(1+\sqrt{3})-2=(1+2 \sqrt{3}+3)-(2+2 \sqrt{3})-2=0 .
$$

Consider the evaluation map $\phi_{2}: D[x] \longrightarrow \mathbb{C}$

$$
g(x) \longmapsto g(\alpha)
$$

Clearly $\langle f(x)\rangle \leqslant$ ker ϕ_{2}.
$f(x)$ is irreducible and $Q[x]$ is PID $\Rightarrow\langle f(x)\rangle$ is maximal ideal
\Rightarrow either $\langle f(x)\rangle=\operatorname{ker} \phi_{\alpha}$ or $\operatorname{ker} \phi_{\alpha}=D[x]$.
$1 \notin \operatorname{ker} \phi_{2} \Rightarrow$ We have $\langle f(x)\rangle=\operatorname{ker} \phi_{2}$.
$\Rightarrow f(x)$ is the minimal polynomial of α.
$\Rightarrow B y$ the main theorem of evaluation map and $\operatorname{deg} f(x)=4$
We Lave $\operatorname{Im} \phi_{\alpha}=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3} \mid c_{i} \in Q\right\}$.
By Inst Isomorphism theorem,

$$
\theta[x] /\left\langle x^{4}-2 x^{2}-2\right\rangle \vDash\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3} \mid c_{i} \in Q\right\} .
$$

(b).

$$
\begin{aligned}
& f(\alpha)=\alpha^{4}-2 \alpha^{2}-2=0 . \\
& \Rightarrow \quad \alpha^{4}-2 \alpha^{2}=2 \\
& \Rightarrow \quad \frac{\alpha^{4}-2 \alpha^{2}}{2}=1 \\
& \Rightarrow \quad \alpha\left(\frac{\alpha^{3}-2 \alpha}{2}\right)=1 . \\
& \Rightarrow \quad \alpha^{-1}=\frac{\alpha^{3}-2 \alpha}{2}=-\alpha+\frac{1}{2} \alpha^{3}
\end{aligned}
$$

