Homework T.

1.	$x+z$ is a factor of $x^{b}-x^{4}+x^{3}-x+1$ in $\mathbb{Z}p[x]$
	$(-7 - 2 B a root of x^{\nu} - x^{4} + x^{3} - x + 1)$ in Zp
	$r \rightarrow p \left((-2)^{b} - (-2)^{4} + (-2)^{3} - (-2) + \right)$
	P 43
	$ = \gamma \rho = 43 $

ъ.	Since $1^3 - 2x + = 0$ in \mathbb{Z}_5 , $\Rightarrow 1$ is a zero of $\alpha^3 - 2x + 1$ in \mathbb{Z}_5 .						
	$\Rightarrow x^3 - 2x + 1$ has $x - 1$ as a factor						
	Compute $x^2 + x - 1 \implies x^3 - 2x + 1 = (x - 1)(x^2 + x - 1).$						
	$x - 1 \left[x^3 - \gamma \chi + 1 \right]$						
	$x^{\lambda} - x^{\nu}$						
	x ³ -7X +						
	<u>x²-x</u>						
	$\frac{-2+1}{2}$						
	$KemArR : In fact \mathfrak{A}^* - r x f = (\mathfrak{A} f)(\mathfrak{A}^* f)$						
	2 is also a zeto of $x^3 - 2x + 1$.						
	Ion may write $x' - 2x + 1 = (x - 2)(x - 3x + 2)$ in this case.						

3. Consider arbitrary degree 2 polynomial Ax2+bx+c in Z2 [x].

$$A = \begin{bmatrix} x & be degree & 7, & so there & are & 2x2 = 4 & polynomials in total. \\ x^2 & X & 0 & is zero \\ x^2 + x & X & 0 & is zero \implies there is 1 & degree & polynomial in ZrTX]$$

$$\begin{pmatrix} x^2 + x + l \end{pmatrix}$$

· Similarly, there are 2x2x2=8 degree 3 polynomials in Z2TXJ.

(x ³	x	0 is 22-0	$\int x^3 + x^2 + x$	V	
$x^3 + x^{\nu}$	×	0	$\int x^3 + x^2 + 1$	V	⇒ there are 3 degree 3 polynomials
$x^{2}+x$	x	0	$x^3 + x + 1$	V	in ZzIX] withowt zero
≪ ³ + 1	x	1 is zero	$x^{3}+x^{2}+x+1$	×	1 is 2170

4. (A).
$$f(x) := x^4 - 2x^3 - 2$$
.
 $f(a) = (1+35)^2 - 2(1+35) - 2 = (1+2(5+3)) - (2+2(5)) - 2 = 0$.
Consider the evaluation map $\phi_a : O[x] \longrightarrow C$
 $g(x) \longrightarrow g(a)$.
(learly $\langle f(x) \rangle \leq ker \phi_a$.
 $f(x)$ is irreducible and $O[x]$ is $PID \Rightarrow \langle f(x) \rangle$ is maximal ideal
 $\Rightarrow either \langle f(x) \rangle = ker \phi_a$ or $ker \phi_a = O[x]$.
 $1 \notin ker \phi_a \Rightarrow We$ have $\langle f(x) \rangle = ker \phi_a$.
 $\Rightarrow f(x)$ is the minimal polynomial of a .
 $\Rightarrow By$ the main theorem of Evaluation map and deg $f(x) = 4$
 We have $Im \phi_a = \int Co + C_1 2 + C_2 a^2 + C_3 a^3 | Ci \in 0 \}$.
By 1st Isomorphism theorem .
 $O[x]/(x^4 - xx^2 - x \gamma \Rightarrow \int Co + C_1 2 + C_2 a^2 + C_3 a^3 | Ci \in 0 \}$.
(b). $f(a) = a^4 - 2a^2 - 2 = 0$.
 $\Rightarrow a^4 - 2a^2 = 1$
 $\Rightarrow a(\frac{a^3 - 2a}{2}) = 1$.
 $\Rightarrow a^4 = \frac{a^3 - 2a}{2} = -a + \frac{1}{2}a^2$