Homework 6

1. (a) Suppose p is a prime number. Prove that $x^{p}-x+1$ has no zero in \mathbb{Z}_{p}.
(b) Prove that $x^{3}-x+1$ is irreducible in $\mathbb{Z}_{3}[x]$.
(Remark. Using Gabis theory one can show that $x^{p}-x+1$ is irreducible In $\mathbb{Z}_{p}[x]$ for any prime p.)
2. (a) Prove that $x^{3}-2$ is irreducible in $Q[x]$.
(b) Let $\phi_{\sqrt[3]{2}}: \mathbb{Q}[x] \rightarrow \mathbb{R}, \phi_{\sqrt[3]{2}}(f(x))=f(\sqrt[3]{2})$ be the evaluation at $\sqrt[3]{2}$. We know that $\phi_{\sqrt[3]{2}}$ is a ring homomorphism.
(b-1) Prove that ger ${\phi_{\sqrt[3]{2}}}=\left\langle x^{3}-2\right\rangle$.
(b-2) Prove that $\operatorname{lm} \phi_{\sqrt[3]{2}}=\left\{a_{0}+\sqrt[3]{2} a_{1}+(\sqrt[3]{2})^{2} a_{2} \mid a_{0}, a_{1}, a_{2} \in Q\right\}$
(b-3) Let $Q[\sqrt[3]{2}]:=\left\{a_{0}+\sqrt[3]{2} a_{1}+(\sqrt[3]{2})^{2} a_{2} \mid a_{0}, a_{1}, a_{2} \in Q\right\}$.
Prove that $Q[x] /\left\langle x^{3}-2\right\rangle \simeq Q[\sqrt[3]{2}]$.
(b-4) Prove that $Q[\sqrt[3]{2}]$ is a field.
3. (a) Prove that $\sqrt{-21}$ is irreducible in $\mathbb{Z}[\sqrt{-21} I$.
(b) Prove that $\langle\sqrt{-21}\rangle$ is not a prime ideal of $\mathbb{Z}[\sqrt{-21}]$.
(c) Prove that $\mathbb{Z}[\sqrt{-21}]$ is not a PID.

Homework 6
Thursday, May 10, 2018
4. Let $\omega:=\frac{-1+\sqrt{-3}}{2}$. Notice that $\omega^{2}+\omega+1=0$; and so $\omega+\bar{\omega}=-1$ and $\omega \bar{\omega}=1$ where $\bar{\omega}$ is the complex conjugate of ω. Let $\mathbb{Z}[\omega]:=\{a+b \omega \mid a, b \in \mathbb{Z}\}$. We know that $\mathbb{Z}[\omega]$ is a subring of \mathbb{C}. Let $\mathbb{Q}[\omega]:=\{a+b \omega \mid a, b \in \mathbb{Q}\}$.
(a) Prove that $Q[x] /\left\langle x^{2}+x+1\right\rangle \simeq Q[\omega]$ and $\mathbb{Q}[\omega]$ is a field.
(b) Prove that for any $z \in \mathbb{Q}[\omega]$ there is $u \in \mathbb{Z}[\omega]$ such that

$$
|z-u| \leq \sqrt{3} / 3 .
$$

(Hint. Use the following figure.) (Only in this part it is OK to be pictorial).
(c) Prove that for any $a \in \mathbb{Z}[\omega]$ and $b \in \mathbb{Z}[\omega] \backslash\{0\}$, there are $q, r \in \mathbb{Z}[\omega]$ such that

$$
a=b q+r \quad \text { and } \quad|r| \leq \frac{\sqrt{3}}{3}|b|
$$

(Hint. Consider $\frac{a}{b} \in \mathbb{Q}[\omega]$; use part (b) to find $q \in \mathbb{Z}[\omega]$.

$$
\left.\left|\frac{a}{b}-q\right| \leq \frac{\sqrt{3}}{3} \text {. Let } r:=b\left(\frac{a}{b}-q\right) \cdot\right)
$$

(d) Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain. (Hint. Let $N(a):=|a|^{2}$.)
(e) Prove that $\mathbb{Z}[\omega]$ is a PID.

Homework 6
5. Suppose $a, b \in \mathbb{Z}$ and $a^{2}+a b+b^{2}=p$ is a prime number >3.
(a) Prove that $a-b \omega$ is irreducible in $\mathbb{Z}[\omega]$.
(Hint. Consider $|a-b \omega|^{2}$.)
(b) Prove that $\exists \alpha \in \mathbb{Z}_{p}$ such that

$$
\begin{array}{ll}
(b-1) \quad \alpha^{2}+\alpha+1=0 & \text { in } \left.\mathbb{Z}_{p}\right) \\
(b-2) \quad a-b \alpha=0 & \text { in } \mathbb{Z}_{p} .
\end{array}
$$

(c) Let $\phi: \mathbb{Z}[\omega] \rightarrow \mathbb{Z}_{p}, \phi(c+d \omega):=c+d \alpha$ where α is given in part (b). Prove that ϕ is a ring homomorphism.
(d) Prove that $\operatorname{ker} \phi=\langle a-b \omega\rangle$.
(Hint. Use problems $4 . e$ and 5.a.)
(e) Prove that $\mathbb{Z}[\omega] /\langle a-b \omega\rangle \simeq \mathbb{Z}_{p}$.

