Homework 5
Thursday, May 3, 2018

1. (a) Prove that $\sqrt{-10}$ is irreducible in $\mathbb{Z}[\sqrt{-10}]=\{a+\sqrt{-10} b \mid a, b \in \mathbb{Z}\}$.
(Hint. You do not need to show $\mathbb{Z}[\sqrt{-10}]$ is a ring.

$$
\text { - } \begin{aligned}
\sqrt{-10} & =(a+\sqrt{-10} b)(c+\sqrt{-10} d) \text { implies } \\
10 & =\left(a^{2}+10 b^{2}\right)\left(c^{2}+10 d^{2}\right) . \text { Deduce }
\end{aligned}
$$

$a^{2}+10 b^{2} \in\{1,2,5,10\}$. Notice that, if $b \neq 0$, then

$$
\left.a^{2}+10 b^{2} \geq 10 .\right)
$$

(b) Show that $2 \times 5 \in\langle\sqrt{-10}\rangle$ and $2 \notin\langle\sqrt{-10}\rangle$ and $5 \notin\langle\sqrt{-10}\rangle$.
(c) Prove that $\mathbb{Z}[\sqrt{-10}]$ is not a PID.
(Hint. If it is a PID, then what can you say about $\langle\sqrt{-10}\rangle$?)
2. We are told that $p(x)=x^{4}-2 x^{3}+2 x^{2}-2 x+2$ is irreducible in Q $[x]$ and $\alpha \in \mathbb{C}$ is a zero of $p(x)$. Let

$$
\phi_{\alpha}: Q[x] \rightarrow \mathbb{C}, \phi_{\alpha}(f(x)):=f(\alpha)
$$

We know that ϕ_{α} is a ring homomorphism.
(a) Prove that er $\phi_{\alpha}=\langle p(x)\rangle$.
(b) Prove that $\operatorname{Im} \phi_{\alpha}=\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3} \mid c_{0}, c_{1}, c_{2}, c_{3} \in \mathbb{Q}\right\}$.

Homework 5
Friday, May 4, 2018 10:56 AM
(c) Prove that $Q[x] /\langle p(x)\rangle \simeq\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3} \mid c_{0}, c_{1}, c_{2}, c_{3} \in G_{\}}\right\}$
(d) Prove that $\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+c_{3} \alpha^{3} \mid c_{0}, c_{1}, c_{2}, c_{3} \in \mathbb{Q}\right\}$ is a field.
3. We are told that $R=\left\{\left.\left[\begin{array}{ll}a & b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}$ is a unital commutative ring. Let $\phi: R \rightarrow \mathbb{Z}, \phi\left(\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]\right)=a-b$.
(a) Prove that ϕ is a ring homomorphism.
(b) Find kier ϕ.
(c) Prove that $R /{ }_{\text {jer } \phi} \simeq \mathbb{Z}$.
(d) Is er ϕ a prime ideal?
(e) Is er ϕ a maximal ideal?
4. (a) Show that $x^{2}-5=0$ has no zero in $Q I \sqrt{2} I$.
(b) Prove that $Q[\sqrt{2}] \not \approx Q[\sqrt{5} I$.
5. (a) Suppose p is an odd prime, and there is $a \in \mathbb{Z}_{p}$ such that $a^{2}=-1$ in \mathbb{Z}_{p}. Prove that the multiplicative order of a is 4 .

Homework 5
Thursday, May 3, 2018 6:11 PM
(that means $a^{4}=1$ and $a^{m} \neq 1$ for $0<m<4$.)
(b) Use part (a) and Lagrange's theorem to deduce:
if p is a prime and $p \equiv 3(\bmod 4)$, then there is no $a \in \mathbb{Z}_{p}$ such that $a^{2}=-1$.
(c) Suppose p is a prime and $p \equiv 3(\bmod 4)$. Prove that P is irreducible in $\mathbb{Z}[i]$.
(Hint. Suppose $p=(a+b i)(c+d i)$. Then deduce $a^{2}+b^{2}$ is either $1, p$, or p^{2}. If $a^{2}+b^{2}=1$, show $a+i b$ is a unit in $\mathbb{Z}[i] ;$ if $a^{2}+b^{2}=p^{2}$, show $c+$ id is a unit in $\mathbb{Z}[i] ;$ and use part (b) to show $a^{2}+b^{2}$ (cannot be p.)
(d) Use part (c) to show $\mathbb{Z}[i] /\langle p\rangle$ is a field if p is a prime and $p \equiv 3(\bmod 4)$.

