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Problem 1

1. First, we must establish that U(Z[
√
−10]) = {±1}. Take a+b

√
−10 ∈ U([Z

√
−10]). Then ∃c+d

√
−10 ∈

Z[
√
−10] such that (a+ b

√
−10)(c+ d

√
−10) = 1. Applying the norm of the Gaussian integers, we see

(a2 + 10b2)(c2 + 10d2) = 1. As a2, b2, c2, d2 ∈ N, a2 + 10b2 = 1, and so b = 0 and a = ±1. Clearly,

±1 ∈ Z[
√
−10], and so the claim is shown. We will now prove

√
−10 is irreducible in Z[

√
−10]. First

note that
√
−10 is not a zero divisor as Z[

√
−10] ⊆ C is an integral domain, and is not a unit by the

above portion. Let
√
−10 = (a + b

√
−10)(c + d

√
−10). To show the claim, it suffices to show either

a + b
√
−10 or c + d

√
−10 is a unit. Again taking norms, we see (a2 + 10b2)(c2 + 10d2) = 10, and

a2 + 10b2, c2 + 10d2 ∈ N. Therefore, by factorization in the integers, we know a2 + 10b2 ∈ {1, 2, 5, 10},
as 10 = 1 · 10 or 10 = 2 · 5. Note that if |b| > 1, a2 + 10b2 > 10, and so we have a contradiction.

Thus, b ∈ {0,±1}. If b = 0, a2 ∈ {1, 2, 5, 10} =⇒ a2 = 1, as 6 ∃z ∈ Z such that z2 ∈ {2, 5, 10}.
Therefore, a+ b

√
−10 ∈ U(Z[

√
−10]), by the characterization of the units, and so

√
−10 is irreducible.

We now need to consider the case where b 6= 0, and thus, b2 = 1. In this case, a2 = 0, as otherwise

a2 +10b2 > 10, and so a = 0 as C is an integral domain. Therefore, a+b
√
−10 = ±

√
−10. By a similar

argument to above, as a2 + 10b2 = 10, we must have c2 + 10d2 = 1, and so c2 = 1, and therefore,

c+ d
√
−10 ∈ U(Z[

√
−10]) and

√
−10 is irreducible.

2. Note that 2 · 5 = 10 = (−
√
−10) ·

√
−10, and so 2 · 5 ∈ 〈

√
−10〉. Assume, for contradiction, that

2, 5 ∈ 〈
√
−10〉. This implies 2 = (a + b

√
−10)(

√
−10) and similarly, 5 = (c + d

√
−10)(

√
−10). As in

part a, we take the norm of both sides and see 4 = (a2 + 10b2)10 and 25 = (c2 + 10d2)10, where all

products are in the integers. The former is a contradiction as 10 - 4, and the latter is a contradiction

as 10 - 25. So 2, 5 /∈ 〈
√
−10〉.

3. Some notation: Max(D) is the set of all maximal ideals of D (where D is some ring), and Spec(D) is

the set of all prime ideals of D. Assume Z[
√
−10] is a PID, for contradiction. First note that in a PID

D that is not a field, a ∈ D is irreducible ⇐⇒ 〈a〉 ∈ Max(D). By part a, Z[
√
−10] is not a field and√

−10 is irreducible, but by part b, 〈
√
−10〉 is not prime. As Max(Z[

√
−10]) ⊆ Spec(Z[

√
−10]), we see

〈
√
−10〉 /∈ Max(Z[

√
−10]), and thus Z[

√
−10] cannot be a PID.

Problem 2
Let p(x) = x4 + 2x3 + 2x2 − 2x + 2, and note that p(x) is irreducible. Let α ∈ C be a root of p(x) (note

that we know there is such a root by the Fundamental Theorem of Algebra). Consider the evaluation ring

homomorphism given by φα : Q[x]→ C by φα(f(x)) := f(α). By construction, φα(p(x)) = p(α) = 0, and so

p(x) ∈ kerφα. As Q[x] is a PID, we know kerφα = 〈q(x)〉, for some q(x) ∈ Q[x]. Therefore, p(x) = h(x)q(x),

for some h(x) ∈ Q[x]. As p(x) is irreducible, =⇒ h(x) ∈ U(Q[x]) = Q\{0}, or q(x) ∈ Q\{0}. If

q(x) ∈ Q\{0}, then 〈q(x)〉 = Q[x] (by homework 3), but this is a contradiction as ∃β ∈ Q such that β 6= α,

and so φα(x− β) = α− β 6= 0, and so the kernel cannot be the whole ring. Therefore, h(x) ∈ Q\{0}. So we

see 〈p(x)〉 = 〈q(x)〉 = kerφα, also by homework 3.

Let X = {c3α3 + c2α
2 + c1α + c0 | c0, c1, c2, c3 ∈ Q} ⊆ C. Take c3α

3 + c2α
2 + c1α + c0 ∈ X. Then

g(x) = c3x
3 + c2x

2 + c1x + c0 ∈ Q[x] is such that φα(g(x)) = c3α
3 + c2α

2 + c1α + c0, and so X ⊆ Imφα.

Now take c ∈ Imφα. Then we know ∃f(x) ∈ Q[x] such that f(α) = c. By the division algorithm in Q[x],

we know ∃q(x), r(x) ∈ Q[x] such that f(x) = p(x)q(x) + r(x) and deg r(x) < deg p(x) = 4 (and so we

may write r(x) = a3x
3 + a2x

2 + a1x + a0 ∈ Q[x]). Therefore, c = φα(f(x)) = φα(p(x)q(x) + r(x)) =

φα(p(x)q(x))+φα(r(x)) = 0+φα(r(x)) = a3α
3 +a2α

2 +a1α+a0, and so the claim is shown and X = Imφα.

By the First Isomorphism Theorem, Q[x]/〈p(x)〉 ' X. Further, as Q[x] is a PID but not a field, and

p(x) is irreducible, 〈p(x)〉 is maximal and thus Q[x]/〈p(x)〉 is a field.
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Problem 3

1. Let φ : R→ Z be as defined. We will first show it is a ring homomorphism– takeA :=

(
a b

b a

)
, C

(
c d

d c

)
∈

R. Then φ(AC) = φ

((
ca+ db ad+ bc

ad+ bc ca+ db

))
= (ca+ db)− (ad+ bc) = (a− b)(c− d) = φ(A)φ(C), and

similarly, φ(A+ C) = (a+ c)− (b+ d) = (a− b) + (c− d) = φ(A) + φ(C).

2. Note that A :=

(
a b

b a

)
∈ kerφ ⇐⇒ a − b = 0 ⇐⇒ a = b ⇐⇒ A =

(
a a

a a

)
. Therefore,

kerφ =

{(
a a

a a

)
| a ∈ Z

}
.

3. By the First Isomorphism Theorem, it suffices to show φ is surjective– this is clear, as given any z ∈ Z,

A =

(
z 0

0 z

)
∈ R and φ(A) = z.

4. Yes, the kernel is prime as Z is an integral domain.

5. No, the kernel is not maximal, as Z is not a field.

Problem 4
Assume, for contradiction, that ∃α = a+ b

√
2 ∈ Q[

√
2] such that α2 − 5 = 0, or α2 = a2 + 2ab

√
2 + b2 = 5.

If a = 0, then 2b2 = 5, a contradiction as b ∈ Z and 2 - 5. If b = 0, then a2 = 5, and so similarly we

have a contradiction. Therefore, ab 6= 0, as R is an integral domain, so we see
√

2 = −a2−b2+5
2ab , which is a

contradiction as a, b ∈ Z and
√

2 /∈ Q.

Assume, for contradiction, that ∃φ : Q[
√

5] → Q[
√

2] such that φ is a ring isomorphism. Then φ(
√

5
2
) =

φ(5) = 5 · φ(1) = 5, as φ(1) = 1 by definition, and as φ(
√

5
2
) = φ(

√
5)2, this implies φ(

√
5)2 − 5 = 0, a

contradiction by part a.

Problem 5
Notation: o(a) denotes the multiplicative order of a in U(Z/pZ) (which is a group by a previous homework),

and a = a+ pZ for a given a ∈ Z.

1. Let p be an odd prime, and a ∈ Z/pZ such that a2 = 1. First note that a4 = (a2)2 = (−1)2 = 1.

Therefore, o(a) | 4. As a2 = −1, a 6= 1, so o(a) 6= 1. Similarly, o(a) 6= 2, as a2 = −1. Thus, o(a) = 4.

2. Let p ≡ 3 mod 4. Then we know ∃k ∈ Z such that p = 4k + 3. As Z/pZ is a field, |U(Z/pZ)| =

|Z/pZ\{0}| = p − 1 = 4k + 2. But 4 - 4k + 2 for any k ∈ Z, and so by Lagrange we cannot have a

subgroup of order 4 (as if H ≤ G, G a group, then |G| = [G : H] |H|). Therefore, we cannot have an

element a ∈ Z/pZ such that a2 = −1, as any such element will have order four by part a.

3. Let p be an odd prime, p ≡ 3 mod 4. Take a+bi, c+di ∈ Z[i], and let p = (a+bi)(c+di) ∈ Z[i]. Then,

taking norms, we see p2 = (a2 + b2)(c2 + d2). As p is prime in the integers, a2 + b2 ∈ {1, p, p2}, and

similarly for c2 +d2 ∈ {1, p, p2}. If a2 + b2 = 1, a2 + b2 ∈ U(Z[i]) by Lemma 0.1, and so p is irreducible.

If a2 + b2 = p2, then similarly c + di ∈ U(Z[i]) and again p is irreducible. Now let a2 + b2 = p. Then

a2 + b2 = 0. Note that p - a2, p - b2– if not, p | a, as p prime, so for some c ∈ Z a2 + b2 = (cp)2 + b2 =

c2p2 + b2 > p, a contradiction. Thus, ∃a−1 ∈ Z/pZ, and so a2 + b2 = a2(1 + (a−1b)2) = 0. As a2 6= 0

and Z/pZ is an integral domain, 1 + (a−1b)2 = 0 =⇒ −1 = (a−1b)2. But this is a contradiction as by

part b we can have no such element. Therefore, p is irreducible in Z[i].

4. By part c and the fact Z[i] is a PID but not a field, 〈p〉 is maximal, and so Z[i]/〈p〉 is a field.
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Note: What we have proved in this problem is that given an odd prime p such that p ≡ 3 mod 4, then

Z[i]/〈p〉 is a field. It turns out that the converse also holds, using similar proofs. But on the way we showed

that p ≡ 3 mod 4 =⇒ p 6= a2 + b2, for any a, b ∈ Z. This is a small part of a larger problem called

Fermat’s Theorem on the Sum of Two Squares that says that given an odd prime p, p = a2 + b2 for some

a, b ∈ Z ⇐⇒ p ≡ 1 mod 4. Note that given an odd prime, p ≡ 1 mod 4 or p ≡ 3 mod 4 (as it cannot

be divisible by 4 or even). So it suffices to show given p ≡ 1 mod 4 that p = a2 + b2, for some a, b ∈ Z. In

fact, p ≡ 1 mod 4 ⇐⇒ p = a2 + b2, for some a, b ∈ Z ⇐⇒ p ∈ Z[i] is not irreducible ⇐⇒ x2 = −1 has a

solution in Z/pZ.

Lemma 0.1. U(Z[i]) = {a+ bi ∈ Z[i] | a2 + b2 = 1}.

Proof. Take a + bi ∈ U(Z[i]). Then ∃c + di ∈ Z[i] such that (a + bi)(c + di) = 1, and taking the norm, we

see (a2 + b2)(c2 + d2) = 1, and as all terms are integers, we see a2 + b2 = 1. Now take a+ bi ∈ Z[i] such that

a2 + b2 = 1. As a2, b2 ∈ N, we see a2, b2 ∈ {0, 1}, as otherwise they do not sum to 1. If a2 = 0, b2 = 1 and

a = 0, so b = ±1– in this case a + bi = ±i, and noting that i(−i) = 1, we see a + bi ∈ U(Z[i]). If b2 = 0,

then a2 = 1, and so a+ bi = ±1, and as (−1)(−1) = 1, 1 · 1 = 1, a+ bi ∈ U(Z[i]) and the claim is shown.
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