Math 103B
 Homework \# 5 Solutions

Due on May 9th
Professor Golsefidy

Prepared by: Rosemary Elliott Smith

Problem 1

1. First, we must establish that $U(\mathbb{Z}[\sqrt{-10}])=\{ \pm 1\}$. Take $a+b \sqrt{-10} \in U([\mathbb{Z} \sqrt{-10}])$. Then $\exists c+d \sqrt{-10} \in$ $\mathbb{Z}[\sqrt{-10}]$ such that $(a+b \sqrt{-10})(c+d \sqrt{-10})=1$. Applying the norm of the Gaussian integers, we see $\left(a^{2}+10 b^{2}\right)\left(c^{2}+10 d^{2}\right)=1$. As $a^{2}, b^{2}, c^{2}, d^{2} \in \mathbb{N}, a^{2}+10 b^{2}=1$, and so $b=0$ and $a= \pm 1$. Clearly, $\pm 1 \in \mathbb{Z}[\sqrt{-10}]$, and so the claim is shown. We will now prove $\sqrt{-10}$ is irreducible in $\mathbb{Z}[\sqrt{-10}]$. First note that $\sqrt{-10}$ is not a zero divisor as $\mathbb{Z}[\sqrt{-10}] \subseteq \mathbb{C}$ is an integral domain, and is not a unit by the above portion. Let $\sqrt{-10}=(a+b \sqrt{-10})(c+d \sqrt{-10})$. To show the claim, it suffices to show either $a+b \sqrt{-10}$ or $c+d \sqrt{-10}$ is a unit. Again taking norms, we see $\left(a^{2}+10 b^{2}\right)\left(c^{2}+10 d^{2}\right)=10$, and $a^{2}+10 b^{2}, c^{2}+10 d^{2} \in \mathbb{N}$. Therefore, by factorization in the integers, we know $a^{2}+10 b^{2} \in\{1,2,5,10\}$, as $10=1 \cdot 10$ or $10=2 \cdot 5$. Note that if $|b|>1, a^{2}+10 b^{2}>10$, and so we have a contradiction. Thus, $b \in\{0, \pm 1\}$. If $b=0, a^{2} \in\{1,2,5,10\} \Longrightarrow a^{2}=1$, as $\nexists z \in \mathbb{Z}$ such that $z^{2} \in\{2,5,10\}$. Therefore, $a+b \sqrt{-10} \in U(\mathbb{Z}[\sqrt{-10}])$, by the characterization of the units, and so $\sqrt{-10}$ is irreducible. We now need to consider the case where $b \neq 0$, and thus, $b^{2}=1$. In this case, $a^{2}=0$, as otherwise $a^{2}+10 b^{2}>10$, and so $a=0$ as \mathbb{C} is an integral domain. Therefore, $a+b \sqrt{-10}= \pm \sqrt{-10}$. By a similar argument to above, as $a^{2}+10 b^{2}=10$, we must have $c^{2}+10 d^{2}=1$, and so $c^{2}=1$, and therefore, $c+d \sqrt{-10} \in U(\mathbb{Z}[\sqrt{-10}])$ and $\sqrt{-10}$ is irreducible.
2. Note that $2 \cdot 5=10=(-\sqrt{-10}) \cdot \sqrt{-10}$, and so $2 \cdot 5 \in\langle\sqrt{-10}\rangle$. Assume, for contradiction, that $2,5 \in\langle\sqrt{-10}\rangle$. This implies $2=(a+b \sqrt{-10})(\sqrt{-10})$ and similarly, $5=(c+d \sqrt{-10})(\sqrt{-10})$. As in part a, we take the norm of both sides and see $4=\left(a^{2}+10 b^{2}\right) 10$ and $25=\left(c^{2}+10 d^{2}\right) 10$, where all products are in the integers. The former is a contradiction as $10 \nmid 4$, and the latter is a contradiction as $10 \nmid 25$. So $2,5 \notin\langle\sqrt{-10}\rangle$.
3. Some notation: $\operatorname{Max}(D)$ is the set of all maximal ideals of D (where D is some ring), and $\operatorname{Spec}(D)$ is the set of all prime ideals of D. Assume $\mathbb{Z}[\sqrt{-10}]$ is a PID, for contradiction. First note that in a PID D that is not a field, $a \in D$ is irreducible $\Longleftrightarrow\langle a\rangle \in \operatorname{Max}(D)$. By part a, $\mathbb{Z}[\sqrt{-10}]$ is not a field and $\sqrt{-10}$ is irreducible, but by part $\mathrm{b},\langle\sqrt{-10}\rangle$ is not prime. As $\operatorname{Max}(\mathbb{Z}[\sqrt{-10}]) \subseteq \operatorname{Spec}(\mathbb{Z}[\sqrt{-10}])$, we see $\langle\sqrt{-10}\rangle \notin \operatorname{Max}(\mathbb{Z}[\sqrt{-10}])$, and thus $\mathbb{Z}[\sqrt{-10}]$ cannot be a PID.

Problem 2

Let $p(x)=x^{4}+2 x^{3}+2 x^{2}-2 x+2$, and note that $p(x)$ is irreducible. Let $\alpha \in \mathbb{C}$ be a root of $p(x)$ (note that we know there is such a root by the Fundamental Theorem of Algebra). Consider the evaluation ring homomorphism given by $\phi_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{C}$ by $\phi_{\alpha}(f(x)):=f(\alpha)$. By construction, $\phi_{\alpha}(p(x))=p(\alpha)=0$, and so $p(x) \in \operatorname{ker} \phi_{\alpha} . \mathrm{As} \mathbb{Q}[x]$ is a PID, we know $\operatorname{ker} \phi_{\alpha}=\langle q(x)\rangle$, for some $q(x) \in \mathbb{Q}[x]$. Therefore, $p(x)=h(x) q(x)$, for some $h(x) \in \mathbb{Q}[x]$. As $p(x)$ is irreducible, $\Longrightarrow h(x) \in U(\mathbb{Q}[x])=\mathbb{Q} \backslash\{0\}$, or $q(x) \in \mathbb{Q} \backslash\{0\}$. If $q(x) \in \mathbb{Q} \backslash\{0\}$, then $\langle q(x)\rangle=\mathbb{Q}[x]$ (by homework 3), but this is a contradiction as $\exists \beta \in \mathbb{Q}$ such that $\beta \neq \alpha$, and so $\phi_{\alpha}(x-\beta)=\alpha-\beta \neq 0$, and so the kernel cannot be the whole ring. Therefore, $h(x) \in \mathbb{Q} \backslash\{0\}$. So we see $\langle p(x)\rangle=\langle q(x)\rangle=\operatorname{ker} \phi_{\alpha}$, also by homework 3 .

Let $X=\left\{c_{3} \alpha^{3}+c_{2} \alpha^{2}+c_{1} \alpha+c_{0} \mid c_{0}, c_{1}, c_{2}, c_{3} \in \mathbb{Q}\right\} \subseteq \mathbb{C}$. Take $c_{3} \alpha^{3}+c_{2} \alpha^{2}+c_{1} \alpha+c_{0} \in X$. Then $g(x)=c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} \in \mathbb{Q}[x]$ is such that $\phi_{\alpha}(g(x))=c_{3} \alpha^{3}+c_{2} \alpha^{2}+c_{1} \alpha+c_{0}$, and so $X \subseteq \operatorname{Im} \phi_{\alpha}$. Now take $c \in \operatorname{Im} \phi_{\alpha}$. Then we know $\exists f(x) \in \mathbb{Q}[x]$ such that $f(\alpha)=c$. By the division algorithm in $\mathbb{Q}[x]$, we know $\exists q(x), r(x) \in \mathbb{Q}[x]$ such that $f(x)=p(x) q(x)+r(x)$ and $\operatorname{deg} r(x)<\operatorname{deg} p(x)=4$ (and so we may write $\left.r(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Q}[x]\right)$. Therefore, $c=\phi_{\alpha}(f(x))=\phi_{\alpha}(p(x) q(x)+r(x))=$ $\phi_{\alpha}(p(x) q(x))+\phi_{\alpha}(r(x))=0+\phi_{\alpha}(r(x))=a_{3} \alpha^{3}+a_{2} \alpha^{2}+a_{1} \alpha+a_{0}$, and so the claim is shown and $X=\operatorname{Im} \phi_{\alpha}$.

By the First Isomorphism Theorem, $Q[x] /\langle p(x)\rangle \simeq X$. Further, as $\mathbb{Q}[x]$ is a PID but not a field, and $p(x)$ is irreducible, $\langle p(x)\rangle$ is maximal and thus $Q[x] /\langle p(x)\rangle$ is a field.

Problem 3

1. Let $\phi: R \rightarrow \mathbb{Z}$ be as defined. We will first show it is a ring homomorphism- take $A:=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right), C\left(\begin{array}{ll}c & d \\ d & c\end{array}\right) \in$ R. Then $\phi(A C)=\phi\left(\left(\begin{array}{ll}c a+d b & a d+b c \\ a d+b c & c a+d b\end{array}\right)\right)=(c a+d b)-(a d+b c)=(a-b)(c-d)=\phi(A) \phi(C)$, and similarly, $\phi(A+C)=(a+c)-(b+d)=(a-b)+(c-d)=\phi(A)+\phi(C)$.
2. Note that $A:=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \in \operatorname{ker} \phi \Longleftrightarrow a-b=0 \Longleftrightarrow a=b \Longleftrightarrow A=\left(\begin{array}{ll}a & a \\ a & a\end{array}\right)$. Therefore, $\operatorname{ker} \phi=\left\{\left.\left(\begin{array}{ll}a & a \\ a & a\end{array}\right) \right\rvert\, a \in \mathbb{Z}\right\}$.
3. By the First Isomorphism Theorem, it suffices to show ϕ is surjective- this is clear, as given any $z \in \mathbb{Z}$, $A=\left(\begin{array}{ll}z & 0 \\ 0 & z\end{array}\right) \in R$ and $\phi(A)=z$.
4. Yes, the kernel is prime as \mathbb{Z} is an integral domain.
5. No, the kernel is not maximal, as \mathbb{Z} is not a field.

Problem 4

Assume, for contradiction, that $\exists \alpha=a+b \sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ such that $\alpha^{2}-5=0$, or $\alpha^{2}=a^{2}+2 a b \sqrt{2}+b^{2}=5$. If $a=0$, then $2 b^{2}=5$, a contradiction as $b \in \mathbb{Z}$ and $2 \nmid 5$. If $b=0$, then $a^{2}=5$, and so similarly we have a contradiction. Therefore, $a b \neq 0$, as \mathbb{R} is an integral domain, so we see $\sqrt{2}=\frac{-a^{2}-b^{2}+5}{2 a b}$, which is a contradiction as $a, b \in \mathbb{Z}$ and $\sqrt{2} \notin \mathbb{Q}$.

Assume, for contradiction, that $\exists \phi: \mathbb{Q}[\sqrt{5}] \rightarrow \mathbb{Q}[\sqrt{2}]$ such that ϕ is a ring isomorphism. Then $\phi\left(\sqrt{5}^{2}\right)=$ $\phi(5)=5 \cdot \phi(1)=5$, as $\phi(1)=1$ by definition, and as $\phi\left(\sqrt{5}^{2}\right)=\phi(\sqrt{5})^{2}$, this implies $\phi(\sqrt{5})^{2}-5=0$, a contradiction by part a.

Problem 5

Notation: $o(\bar{a})$ denotes the multiplicative order of \bar{a} in $U(\mathbb{Z} / p \mathbb{Z})$ (which is a group by a previous homework), and $\bar{a}=a+p \mathbb{Z}$ for a given $a \in \mathbb{Z}$.

1. Let p be an odd prime, and $\bar{a} \in \mathbb{Z} / p \mathbb{Z}$ such that $\bar{a}^{2}=\overline{1}$. First note that $\bar{a}^{4}=\left(\bar{a}^{2}\right)^{2}=(\overline{-1})^{2}=\overline{1}$. Therefore, $o(\bar{a}) \mid 4$. As $\bar{a}^{2}=\overline{-1}, \bar{a} \neq \overline{1}$, so $o(\bar{a}) \neq \overline{1}$. Similarly, $o(\bar{a}) \neq 2$, as $\bar{a}^{2}=\overline{-1}$. Thus, $o(\bar{a})=4$.
2. Let $p \equiv 3 \bmod 4$. Then we know $\exists k \in \mathbb{Z}$ such that $p=4 k+3$. As $\mathbb{Z} / p \mathbb{Z}$ is a field, $|U(\mathbb{Z} / p \mathbb{Z})|=$ $|\mathbb{Z} / p \mathbb{Z} \backslash\{\overline{0}\}|=p-1=4 k+2$. But $4 \nmid 4 k+2$ for any $k \in \mathbb{Z}$, and so by Lagrange we cannot have a subgroup of order 4 (as if $H \leq G, G$ a group, then $|G|=[G: H]|H|$). Therefore, we cannot have an element $\bar{a} \in \mathbb{Z} / p \mathbb{Z}$ such that $\bar{a}^{2}=\overline{-1}$, as any such element will have order four by part a.
3. Let p be an odd prime, $p \equiv 3 \bmod 4$. Take $a+b i, c+d i \in \mathbb{Z}[i]$, and let $p=(a+b i)(c+d i) \in \mathbb{Z}[i]$. Then, taking norms, we see $p^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$. As p is prime in the integers, $a^{2}+b^{2} \in\left\{1, p, p^{2}\right\}$, and similarly for $c^{2}+d^{2} \in\left\{1, p, p^{2}\right\}$. If $a^{2}+b^{2}=1, a^{2}+b^{2} \in U(\mathbb{Z}[i])$ by Lemma 0.1 , and so p is irreducible. If $a^{2}+b^{2}=p^{2}$, then similarly $c+d i \in U(\mathbb{Z}[i])$ and again p is irreducible. Now let $a^{2}+b^{2}=p$. Then $\bar{a}^{2}+\bar{b}^{2}=\overline{0}$. Note that $p \nmid a^{2}, p \nmid b^{2}$ - if not, $p \mid a$, as p prime, so for some $c \in \mathbb{Z} a^{2}+b^{2}=(c p)^{2}+b^{2}=$ $c^{2} p^{2}+b^{2}>p$, a contradiction. Thus, $\exists \bar{a}^{-1} \in \mathbb{Z} / p \mathbb{Z}$, and so $\bar{a}^{2}+\bar{b}^{2}=\bar{a}^{2}\left(\overline{1}+\left(\bar{a}^{-1} \bar{b}\right)^{2}\right)=\overline{0}$. As $\bar{a}^{2} \neq \overline{0}$ and $\mathbb{Z} / p \mathbb{Z}$ is an integral domain, $\overline{1}+\left(\bar{a}^{-1} \bar{b}\right)^{2}=\overline{0} \Longrightarrow \overline{-1}=\left(\bar{a}^{-1} \bar{b}\right)^{2}$. But this is a contradiction as by part b we can have no such element. Therefore, p is irreducible in $\mathbb{Z}[i]$.
4. By part c and the fact $\mathbb{Z}[i]$ is a PID but not a field, $\langle p\rangle$ is maximal, and so $\mathbb{Z}[i] /\langle p\rangle$ is a field.

Note: What we have proved in this problem is that given an odd prime p such that $p \equiv 3$ mod 4 , then $\mathbb{Z}[i] /\langle p\rangle$ is a field. It turns out that the converse also holds, using similar proofs. But on the way we showed that $p \equiv 3 \bmod 4 \Longrightarrow p \neq a^{2}+b^{2}$, for any $a, b \in \mathbb{Z}$. This is a small part of a larger problem called Fermat's Theorem on the Sum of Two Squares that says that given an odd prime $p, p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z} \Longleftrightarrow p \equiv 1 \bmod 4$. Note that given an odd prime, $p \equiv 1 \bmod 4$ or $p \equiv 3 \bmod 4($ as it cannot be divisible by 4 or even). So it suffices to show given $p \equiv 1 \bmod 4$ that $p=a^{2}+b^{2}$, for some $a, b \in \mathbb{Z}$. In fact, $p \equiv 1 \bmod 4 \Longleftrightarrow p=a^{2}+b^{2}$, for some $a, b \in \mathbb{Z} \Longleftrightarrow p \in \mathbb{Z}[i]$ is not irreducible $\Longleftrightarrow x^{2}=\overline{-1}$ has a solution in $\mathbb{Z} / p \mathbb{Z}$.

Lemma 0.1. $U(\mathbb{Z}[i])=\left\{a+b i \in \mathbb{Z}[i] \mid a^{2}+b^{2}=1\right\}$.
Proof. Take $a+b i \in U(\mathbb{Z}[i])$. Then $\exists c+d i \in \mathbb{Z}[i]$ such that $(a+b i)(c+d i)=1$, and taking the norm, we see $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=1$, and as all terms are integers, we see $a^{2}+b^{2}=1$. Now take $a+b i \in \mathbb{Z}[i]$ such that $a^{2}+b^{2}=1$. As $a^{2}, b^{2} \in \mathbb{N}$, we see $a^{2}, b^{2} \in\{0,1\}$, as otherwise they do not sum to 1 . If $a^{2}=0, b^{2}=1$ and $a=0$, so $b= \pm 1-$ in this case $a+b i= \pm i$, and noting that $i(-i)=1$, we see $a+b i \in U(\mathbb{Z}[i])$. If $b^{2}=0$, then $a^{2}=1$, and so $a+b i= \pm 1$, and as $(-1)(-1)=1,1 \cdot 1=1, a+b i \in U(\mathbb{Z}[i])$ and the claim is shown.

