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Problem 1

1. First, we must establish that U(Z[v/—10]) = {£1}. Take a+b\/—10 € U([Z+/—10]). Then Je+d/—10 €
Z[v/—10] such that (a +by/—10)(c+ dy/—10) = 1. Applying the norm of the Gaussian integers, we see
(a® 4+ 100%)(c® + 10d?) = 1. As a®,b*,c%,d*> € N, a® + 100> = 1, and so b = 0 and a = +1. Clearly,
+1 € Z[v/—10], and so the claim is shown. We will now prove v/—10 is irreducible in Z[\/—10]. First
note that v/—10 is not a zero divisor as Z[/—10] C C is an integral domain, and is not a unit by the
above portion. Let v/—10 = (a + by/—10)(c + dy/—10). To show the claim, it suffices to show either
a+ by/—10 or ¢ + dy/—10 is a unit. Again taking norms, we see (a? 4+ 10b%)(c* + 10d?) = 10, and
a? +10b%,c® 4+ 10d? € N. Therefore, by factorization in the integers, we know a? + 10b? € {1,2, 5,10},
as 10 = 1-10 or 10 = 2-5. Note that if [b| > 1, a® + 106> > 10, and so we have a contradiction.
Thus, b € {0,£1}. If b = 0, a® € {1,2,5,10} = a® =1, as Az € Z such that 2% € {2,5,10}.
Therefore, a + b\/—10 € U(Z[/—10]), by the characterization of the units, and so v/—10 is irreducible.
We now need to consider the case where b # 0, and thus, b*> = 1. In this case, a® = 0, as otherwise
a?+10b% > 10, and so a = 0 as C is an integral domain. Therefore, a +by/—10 = ++/—10. By a similar
argument to above, as a? 4+ 100> = 10, we must have ¢? + 10d®> = 1, and so ¢ = 1, and therefore,

¢+ dv/—10 € U(Z[/-10]) and v/—10 is irreducible.

2. Note that 2-5 = 10 = (—/=10) - /=10, and so 2 -5 € (y/—10). Assume, for contradiction, that
2,5 € (v/—10). This implies 2 = (a + bv/—10)(v/—10) and similarly, 5 = (¢ + d/—10)(v/—10). As in
part a, we take the norm of both sides and see 4 = (a2 + 106?)10 and 25 = (c? + 10d?)10, where all
products are in the integers. The former is a contradiction as 10 t 4, and the latter is a contradiction

as 10125. So 2,5 ¢ (/—10).

3. Some notation: Max(D) is the set of all maximal ideals of D (where D is some ring), and Spec(D) is
the set of all prime ideals of D. Assume Z[\/—10] is a PID, for contradiction. First note that in a PID
D that is not a field, a € D is irreducible <= (a) € Max(D). By part a, Z[/—10] is not a field and
v/—10 is irreducible, but by part b, (v/—10) is not prime. As Max(Z[/—10]) C Spec(Z[v/—10]), we see
(v/—10) ¢ Max(Z[/—10]), and thus Z[/—10] cannot be a PID. [

Problem 2

Let p(z) = a* + 223 + 22% — 22 + 2, and note that p(z) is irreducible. Let o € C be a root of p(z) (note
that we know there is such a root by the Fundamental Theorem of Algebra). Consider the evaluation ring
homomorphism given by ¢, : Q[z] — C by ¢ (f(x)) := f(«). By construction, ¢,(p(z)) = p(a) = 0, and so
p(z) € ker ¢, As Q[z] is a PID, we know ker ¢, = (g()), for some gq(z) € Q[z]. Therefore, p(z) = h(x)q(x),
for some h(z) € Q[z]. As p(x) is irreducible, = h(z) € U(Q[z]) = Q\{0}, or g(x) € Q\{0}. If
q(z) € Q\{0}, then {g(z)) = Q[z] (by homework 3), but this is a contradiction as 35 € Q such that § # «,
and so ¢ (z — B) = a — 5 # 0, and so the kernel cannot be the whole ring. Therefore, h(z) € Q\{0}. So we
see (p(x)) = (q(x)) = ker ¢, also by homework 3.

Let X = {c3a® + c2a® + cia +¢o | co,c1,c0,c3 € QF € C. Take cza® + 20 + cia + ¢ € X. Then
g(z) = c323 + c22% + 17 + ¢ € Q[z] is such that ¢, (g(x)) = cza® + c20? + c1a + co, and so X C Im ¢,.
Now take ¢ € Im@,. Then we know If(z) € Q[z] such that f(«) = ¢. By the division algorithm in Q[x],
we know Jg(x),r(xz) € Q[z] such that f(x) = p(z)q(z) + r(z) and degr(z) < degp(z) = 4 (and so we
may write 7(z) = azx® + ar® + ayx + ag € Q[z]). Therefore, ¢ = ¢o(f (7)) = do(p(x)q(x) + r(x)) =
ba(p(2)q(x)) + da(r(z)) = 0+ ¢a(r(z)) = aza®+aza’® +aja+ap, and so the claim is shown and X = Im ¢,.

By the First Isomorphism Theorem, Q[z]/(p(x))

~ X. Further, as Q[z] is a PID but not a field, and
p(x) is irreducible, (p(x)) is maximal and thus Q[z]/{p(z

)) is a field. O
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Problem 3

1. Let ¢ : R — Z be as defined. We will first show it is a ring homomorphism— take A := <Z 2) ,C (2 i) €

R. Then ¢(AC) = ¢ ((Z‘;ii’; Zji 22)) — (ca+db) — (ad+ be) = (a— b)(c — d) = p(A)(C), and

similarly, p(A+C)=(a+c¢)— (b+d) = (a—b) + (¢ —d) = ¢(A) + ¢(C).

“ b>6ker¢ — a-b=0 <<= a=b = A:(a a). Therefore,
b a a a

ker¢-{<g g) an}.

3. By the First Isomorphism Theorem, it suffices to show ¢ is surjective— this is clear, as given any z € Z,

z 0
A_<O Z)GRand¢(A)—

2. Note that A := <

4. Yes, the kernel is prime as Z is an integral domain.

5. No, the kernel is not maximal, as Z is not a field. [

Problem 4

Assume, for contradiction, that Jo = a + bv/2 € Q[\/i] such that a2 — 5 =0, or a? = a® + 2abv/2 + b = 5.
If a = 0, then 20> = 5, a contradiction as b € Z and 2 { 5. If b = 0, then a? = 5, and so similarly we
have a contradiction. Therefore, ab # 0, as R is an integral domain, so we see v/2 = %, which is a

contradiction as a,b € Z and /2 ¢ Q.

Assume, for contradiction, that 3¢ : Q[v/5] — Q[v/2] such that ¢ is a ring isomorphism. Then (z)(\/SQ)
d(5) =5-¢(1) =5, as ¢(1) = 1 by definition, and as ¢(\/52) = ¢(+/5)?, this implies ¢(v/5)2 —5 =0, a
contradiction by part a. [

Problem 5

Notation: o(a) denotes the multiplicative order of @ in U(Z/pZ) (which is a group by a previous homework),
and a = a + pZ for a given a € Z.

=

1. Let p be an odd prime, and @ € Z/pZ such that a®> = 1. First note that a* = (@?)? = (—1)? =
Therefore, o(@) | 4. As a®> = —1, @ # 1, so o(a) # 1. Similarly, o(a@) # 2, as a®> = —1. Thus, o(a) =

2. Let p = 3 mod 4. Then we know 3k € Z such that p = 4k + 3. As Z/pZ is a field, |U(Z/pZ)| =
|Z/pZ\{0}| = p—1 =4k + 2. But 4 { 4k + 2 for any k € Z, and so by Lagrange we cannot have a
subgroup of order 4 (as if H < G, G a group, then |G| = [G : H] |H|). Therefore, we cannot have an
element @ € Z/pZ such that a> = —1, as any such element will have order four by part a.

3. Let p be an odd prime, p =3 mod 4. Take a+bi,c+di € Z[i], and let p = (a+bi)(c+di) € Z[i]. Then,
taking norms, we see p? = (a? + b?)(c? + d?). As p is prime in the integers, a? + b* € {1, p, p?}, and
similarly for ¢ +d? € {1,p,p?}. If a®> +b*> =1, a®> +b*> € U(ZJi]) by Lemma 0.1, and so p is irreducible.
If a® + b? = p?, then similarly ¢ + di € U(Z[i]) and again p is irreducible. Now let a? + b*> = p. Then
a% +b? = 0. Note that p{ a2, p{b%- if not, p | a, as p prime, so for some ¢ € Z a® + b? = (cp)? + b* =
c2p? 4+ b% > p, a contradiction. Thus, 3a~! € Z/pZ, and so a® + b*> = a*(1+ (@~ '0)?) =0. As a® #0
and Z/pZ is an integral domain, 1+ (@='b)2 =0 == —1 = (a~'b)2. But this is a contradiction as by
part b we can have no such element. Therefore, p is irreducible in Z[i].

4. By part ¢ and the fact Z[i] is a PID but not a field, (p) is maximal, and so Z[i]/(p) is a field. O
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Note: What we have proved in this problem is that given an odd prime p such that p = 3 mod 4, then
Z[i]/(p) is a field. It turns out that the converse also holds, using similar proofs. But on the way we showed
that p = 3 mod4 = p # a? + b2, for any a,b € Z. This is a small part of a larger problem called
Fermat’s Theorem on the Sum of Two Squares that says that given an odd prime p, p = a? + b? for some
a,b € Z < p=1 mod 4. Note that given an odd prime, p =1 mod 4 or p =3 mod 4 (as it cannot
be divisible by 4 or even). So it suffices to show given p =1 mod 4 that p = a? + b2, for some a,b € Z. In
fact, p=1 mod 4 <= p = a®+?, for some a,b € Z <= p € Z[i] is not irreducible <= 22 = —1 has a
solution in Z/pZ. O

Lemma 0.1. U(Z[i]) = {a + bi € Z[i] | a®> + b* = 1}.

Proof. Take a + bi € U(Z[i]). Then Jec + di € Z[i] such that (a + bi)(c + di) = 1, and taking the norm, we
see (a? +b%)(c? + d?) = 1, and as all terms are integers, we see a +b*> = 1. Now take a + bi € Z[i] such that
a? + b2 =1. As a®,b? € N, we see a?,b* € {0, 1}, as otherwise they do not sum to 1. If a®> = 0, b*> = 1 and
a =0, so b = +1- in this case a + bi = +i, and noting that i(—i) = 1, we see a + bi € U(Z]i]). If b*> = 0,
then a? = 1, and so a+bi = +1, and as (—1)(—1) = 1,1-1 =1, a+ bi € U(Z[i]) and the claim is shown. [




