Homework 4
Thursday, April 26, 2018
8:24 AM

1. Prove that $\left.Q[x] /\left\langle x^{2}-2\right\rangle \simeq Q I \sqrt{2}\right]$.
2. Prove that $\mathbb{Z}[i] /\langle 2+i\rangle=\mathbb{Z} / 5 \mathbb{Z}$.
3. Suppose $m, n \in \mathbb{Z}^{\geq 2}$ and $\operatorname{gcd}(m, n)=1$. Prove that

$$
\mathbb{Z} / m n \mathbb{Z} \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
$$

(Hint. Let $c: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}^{\prime} \quad c(k):=(k+m \mathbb{Z}, k+n \mathbb{Z})$
Show that c is a ring homomorphism and er $c=m n \mathbb{Z}$.
Use the $1^{\text {st }}$ isomorphism theorem and the pigeonhole principle to finish proof.)
4. Prove that $\mathbb{Z}[x] /_{n \mathbb{Z}}[x] \simeq \mathbb{Z}_{n}[x]$.
5. Prove that $\mathbb{Q}[x] /\left\langle x^{2}-2 x+6\right\rangle=\left\{c_{0}+c_{1} A \mid c_{0}, c_{1} \in \mathbb{Q}\right\}$ where $A=\left[\begin{array}{cc}0 & -6 \\ 1 & 2\end{array}\right]$.
(Hint. Consider $\phi_{A}: Q[x] \rightarrow M_{2}(Q)$,
$\phi_{A}\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=a_{0} I_{+} a_{1} A+\cdots+a_{n} A^{n}$. Use without proof that Φ_{A} is a ring homomorphism.)

