Math 103B Homework 4 Solution

Haiyu Huang April 28, 2018

1. Prove that $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle \simeq \mathbb{Q}[\sqrt{2}]$.

Proof. Consider $\phi: \mathbb{Q}[x] \rightarrow \mathbb{C}$ given by $f \mapsto f(\sqrt{2})$.

- ϕ is a ring homomorphism:

$$
\phi(f)+\phi(g)=f(\sqrt{2})+g(\sqrt{2})=(f+g)(\sqrt{2})=\phi(f+g)
$$

and

$$
\phi(f) \phi(g)=f(\sqrt{2}) g(\sqrt{2})=(f g)(\sqrt{2})=\phi(f g) .
$$

- $\operatorname{Im} \phi=\mathbb{Q}[\sqrt{2}]$: for every $f(x)=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{Q}[x], f(\sqrt{2})=\sum_{i=0}^{m} a_{i}(\sqrt{2})^{i} \in \mathbb{Q}[\sqrt{2}]$, so $\operatorname{Im} \phi \subset$ $\mathbb{Q}[\sqrt{2}]$; for every $a+b \sqrt{2} \in \mathbb{Q}[\sqrt{2}], \phi(a+b x)=a+b \sqrt{2}$ implies $\operatorname{Im} \phi \supset \mathbb{Q}[\sqrt{2}]$.
- $\operatorname{ker} \phi=\left\langle x^{2}-2\right\rangle: \phi\left(x^{2}-2\right)=(\sqrt{2})^{2}-2=0$ implies $\left\langle x^{2}-2\right\rangle \subset \operatorname{ker} \phi$. Let $f(x) \in \operatorname{ker} \phi$. By long division, $\exists q(x), r(x) \in \mathbb{Q}[x]$ such that $f(x)=q(x)\left(x^{2}-2\right)+r(x)$, where $\operatorname{deg} r<\operatorname{deg}\left(x^{2}-2\right)=$ 2. So $\phi(r)=\phi(f)=0$. Suppose $r(x)=a+b x \in \mathbb{Q}[x]$ for $a, b \in \mathbb{Q}$. Then $\phi(r)=a+b \sqrt{2}=0$ implies $a=b=0$. Thus, $r=0$ and $f(x) \in\left\langle x^{2}-2\right\rangle$. It follows that $\operatorname{ker} \phi \subset\left\langle x^{2}-2\right\rangle$.

The conclusion follows by the first isomorphism theorem.
2. Prove that $\mathbb{Z}[i] /\langle 2+i\rangle \simeq \mathbb{Z} / 5 \mathbb{Z}$.

Proof. Let $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z} / 5 \mathbb{Z}$ be given by $a+b i \mapsto a+3 b+5 \mathbb{Z}$.

- ϕ is a ring homomorphism:

$$
\begin{aligned}
\phi(a+b i)+\phi(c+d i) & =(a+3 b+5 \mathbb{Z})+(c+3 d+5 \mathbb{Z}) \\
& =(a+c)+3(b+d)+5 \mathbb{Z} \\
& =\phi(a+c+(b+d) i) \\
& =\phi((a+b i)+(c+d i))
\end{aligned}
$$

and

$$
\begin{aligned}
\phi(a+b i) \phi(c+d i) & =(a+3 b+5 \mathbb{Z}) \cdot(c+3 d+5 \mathbb{Z}) \\
& =a c+9 b d+3 a d+3 b c+5 \mathbb{Z} \\
& =a c-b d+3(a d+b c)+5 \mathbb{Z} \\
& =\phi(a c-b d+(a d+b c) i) \\
& =\phi((a+b i) \cdot(c+d i)) .
\end{aligned}
$$

- ϕ is surjective: $\phi(1)=1+5 \mathbb{Z}$ so $\phi(n)=n+5 \mathbb{Z}$.
- $\operatorname{ker} \phi=\langle 2+i\rangle: \phi(2+i)=2+3+5 \mathbb{Z}=0+5 \mathbb{Z}$. So $\langle 2+i\rangle \subset \operatorname{ker} \phi$. Let $a \in \operatorname{ker} \phi$. By the division algorithm in $\mathbb{Z}[i], \exists q, r \in \mathbb{Z}[i]$ such that $a=q(2+i)+r$ with $N(r)<N(2+i)=5$. Let $r=r_{1}+r_{2} i$ so $N(r)=r_{1}^{2}+r_{2}^{2}<5$. This implies $\left|r_{1}\right| \leq 2$ and $\left|r_{2}\right| \leq 2$. Moreover, $\phi(r)=\phi(a)=0$ implies $5 \mid r_{1}+3 r_{2}$. If $\left|r_{1}\right|=2$, then $r_{1}^{2}+r_{2}^{2}<5$ forces $r_{2}=0$ and so $r_{1}+3 r_{2}=r_{1}= \pm 2$ is not divisible by 5 ; if $\left|r_{2}\right|=2$, then $r_{1}=0$ and $r_{1}+3 r_{2}=3 r_{2}= \pm 6$ is not divisible by 5 . So $\left|r_{1}\right| \leq 1$ and $\left|r_{2}\right| \leq 1$.

Remark. Recall in the process of proving $\mathbb{Z}[i]$ is a Euclidean domain, not only do we show that $N(r)<N(\beta)$, we show $N(r) \leq \frac{1}{2} N(\beta)$, where β is the divisor and r is the remainder. With this stronger bound on $N(r)$, we immediately have $r_{1}^{2}+r_{2}^{2} \leq \frac{5}{2}$ and $\left|r_{1}\right| \leq 1$ and $\left|r_{2}\right| \leq 1$.

Then $\left|r_{1}+3 r_{2}\right|<5$. Together with $5 \mid r_{1}+3 r_{2}$, this implies $r_{1}+3 r_{2}=0$ and $3 \mid r_{1}$. However, $\left|r_{1}\right| \leq 1$. So $r_{1}=r_{2}=0$. So, $a \in\langle 2+i\rangle$ and $\operatorname{ker} \phi \subset\langle 2+i\rangle$.

Hence the conclusion follows by the first isomorphism theorem.
3. Suppose $m, n \in \mathbb{Z}^{\geq 2}$ and $(m, n)=1$. Prove that

$$
\mathbb{Z} / m n \mathbb{Z} \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
$$

Proof. Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ be given by $x \mapsto(x+m \mathbb{Z}, x+n \mathbb{Z})$.

- φ is a ring homomorphism:

$$
\begin{aligned}
\varphi(x)+\varphi(y) & =(x+m \mathbb{Z}, x+n \mathbb{Z})+(y+m \mathbb{Z}, y+n \mathbb{Z}) \\
& =((x+y)+m \mathbb{Z},(x+y)+n \mathbb{Z}) \\
& =\varphi(x+y)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(x) \cdot \varphi(y) & =(x+m \mathbb{Z}, x+n \mathbb{Z}) \cdot(y+m \mathbb{Z}, y+n \mathbb{Z}) \\
& =(x y+m \mathbb{Z}, x y+n \mathbb{Z}) \\
& =\varphi(x y) .
\end{aligned}
$$

-

$$
\operatorname{ker} \varphi=\{x \in \mathbb{Z}: x+m \mathbb{Z}=0+m \mathbb{Z}, x+n \mathbb{Z}=0+n \mathbb{Z}\}=\{x \in \mathbb{Z}: m|x, n| x\} .
$$

Since $(m, n)=1, m|x, n| x \Longleftrightarrow m n \mid x \Longleftrightarrow x \in m n \mathbb{Z}$. Hence, $\operatorname{ker} \varphi=m n \mathbb{Z}$.
By the first isomorphism theorem, $\bar{\varphi}: \mathbb{Z} / m n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}, x+m n \mathbb{Z} \mapsto(x+m \mathbb{Z}, x+n \mathbb{Z})$ is an injection and an isomorphism onto $\operatorname{Im} \varphi$. Observe that $|\mathbb{Z} / m n \mathbb{Z}|=m n$ and $|\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}|=$ $|\mathbb{Z} / m \mathbb{Z}| \cdot|\mathbb{Z} / n \mathbb{Z}|=m n$. By the pigeonhole principle, $\operatorname{Im} \varphi=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ and hence $\mathbb{Z} / m n \mathbb{Z} \simeq$ $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.
4. Prove that $\mathbb{Z}[x] / n \mathbb{Z}[x] \simeq(\mathbb{Z} / n \mathbb{Z})[x]$.

Proof. Let $\varphi: \mathbb{Z}[x] \rightarrow(\mathbb{Z} / n \mathbb{Z})[x]$ be given by $\sum_{i=0}^{m} a_{i} x^{i} \mapsto \sum_{i=0}^{m}\left(a_{i}+n \mathbb{Z}\right) x^{i} . \varphi$ is clearly surjective and

$$
\operatorname{ker} \varphi=\left\{\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{Z}[x]: a_{i} \in n \mathbb{Z}, i=0, \cdots, m\right\}=n \mathbb{Z}[x] .
$$

Thus the conclusion follows by the first isomorphism theorem.
5. Prove that $\mathbb{Q}[x] /\left\langle x^{2}-2 x+6\right\rangle \simeq\left\{c_{0} I+c_{1} A \mid c_{0}, c_{1} \in \mathbb{Q}\right\}$, where $A=\left[\begin{array}{cc}0 & -6 \\ 1 & 2\end{array}\right]$.

Proof. Let $\phi: \mathbb{Q}[x] \rightarrow M_{2}(\mathbb{Q})$ be the evaluation ring homomophism at A, i.e. $\phi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=$ $a_{0} I+a_{1} A+\cdots+a_{n} A^{n}$. Let $C=\left\{c_{0} I+c_{1} A \mid c_{0}, c_{1} \in \mathbb{Q}\right\}$.
Remark. Note that the characteristic polynomial is $f_{A}(x)=\operatorname{det}(x I-A)=x^{2}-2 x+6$. Cayley-Hamilton theorem says that every square matrix over a commutative ring satisfies its own characteristic polynomial. So, $A^{2}-2 A+6=0$. If you've never heard of this theorem, you do now. For this problem, show $A^{2}-2 A+6=0$ by direct computation.

- $\operatorname{Im} \phi=C$: for every $c_{0}, c_{1} \in \mathbb{Q}, \phi\left(c_{0}+c_{1} x\right)=c_{0} I+c_{1} A$ so $C \subset \operatorname{Im} \phi$. Conversely, let $g(x)=$ $\sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{Q}[x]$ so that $\phi(g)=\sum_{i=0}^{n} a_{i} A^{i}$. By the remark above, $A^{2}=2 A-6$. So, $A^{i}=$ $A^{i=2}(2 A-6)=2 A^{i-1}-6 A^{i-2}$ for $i \geq 2$. This shows we can reduce any power of A to linear term. By induction, $\phi(g) \in C$ and $\operatorname{Im} \phi \subset C$.
- $\operatorname{ker} \phi=\left\langle x^{2}-2 x+6\right\rangle: A^{2}-2 A+6=0$ implies $\left\langle x^{2}-2 x+6\right\rangle \subset \operatorname{ker} \phi$. Let $h(x) \in \operatorname{ker} \phi$. By the division algorithm in $\mathbb{Q}[x], \exists q(x), r(x) \in \mathbb{Q}[x]$ such that $h(x)=q(x)\left(x^{2}-2 x+6\right)+r(x)$, where $\operatorname{deg} r<2$. Let $r(x)=c_{1} x+c_{0}$. Then $\phi(r)=\phi(h)=0$ implies $c_{1} A+c_{0}=0$. So, $c_{0}=c_{1}=0$ and $h(x) \in\left\langle x^{2}-2 x+6\right\rangle$. Hence, $\operatorname{ker} \phi \subset\left\langle x^{2}-2 x+6\right\rangle$.

The conclusion follows by the first isomorphism theorem.

