Homework 3

Thursday, April 19, 2018

1. @ Show that ZIWJ= {a+bw | a,b∈Z} is a subring

of
$$C$$
 where $\omega = \frac{-1+\sqrt{-3}}{2}$.

6) Show that the field of fractions of Z IwJ is

C<u>Hint</u>. Use $\omega^2 + \omega + 1 = 0$; and compute $(a+b\omega)(a+b\overline{\omega})$ where $\overline{\omega} = \frac{-1-\sqrt{-3}}{2} \cdot (\text{Notice } \omega + \overline{\omega} = -1 \text{ and } \omega \overline{\omega} = 1.))$

- 2. ⓐ Suppose R is a unital commutative ring. Prove that $\langle u \rangle = R$ if and only if $u \in U(R)$.
 - (b) Suppose D is an integral domain. Prove that

3. Suppose R_1 and R_2 are unital commutative rings, and IAR₁xR₂.

Prove that $I = I_1 \times I_2$ for some $I_1 \triangleleft R_1$ and $I_2 \triangleleft R_2$.

(<u>Hint.</u> Suppose $(x_1,x_2) \in I$. Then $(x_1,x_2) \cdot (1_{R_1},0_{R_2}) \in I$.)

4. Prove that <2,x> < Z[x] is not a principal ideal.

Thursday, April 19, 2018

(Hint. Suppose to the contrary $\langle f(x) \rangle = \langle 2, x \rangle$. So

frx). h(x) = 2 and $f(x) \cdot g(x) = x$ for some h(x), $g(x) \in \mathbb{Z}[x]$.

- . What can you say about the degree of f using (I)?
- . Show fox is either ±1 or ±2 using (t).
- · Using (II) deduce fox should be ±1 and get a contradiction.)
- 5. (a) Find the remainder of 102459087 divided by 9
 - (b) Find the remainder of 102459087 divided by 11.
 - (c) Compute 2/3 in \mathbb{Z}_{11} , 2/7 in \mathbb{Z}_{19} , and 2/q in \mathbb{Z}_{23} (Justify your answers; and do not use long division to find the remainders.)
- 6. Let $f: \mathbb{Z}[i] \to \mathbb{Z}_5$, $f(a+bi) = \overline{a} \oplus 2\overline{b}$ where \overline{a} is the remainder of a divided by 5 and \overline{b} is the remainder of b divided by 5.
 - @ Prove that f is a ning homomorphism.
 - \bigcirc Show that $\langle -2+i \rangle \subseteq \ker f$.