Homework 2 Thursday, April 12, 2018 11:59 PM 1. (a) Find all the solutions of $x^2 - x - 2$ in \mathbb{Z}_{17} . (b) Does $x^2 - x - 2$ have only two zeros in \mathbb{Z}_{18} ? 2. Find the characteristic of $\mathbb{Z}_4 \times \mathbb{Z}_6$ and $\mathbb{Z}_6 \times \mathbb{Z}_8 \times \mathbb{Z}_9$. (Justify your answer.). 3.@ Show that Q [12]=Za+b12 | a, be@g is a field. B Similarly one can show that ZIV21 = ≥a+bv2 | a, b∈Z
is a ring. Prove that QEJI is the field of fractions of $\mathbb{Z}[\sqrt{2}]$ (up to an isomorphism). 4. Let f: ZIJ21→ ¿[a 2b] |a,beZ }, $f(a+\sqrt{2}b) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ is an isomorphism of rings. (You do not need to show that the codomain is a subring of $M_{1}(\mathbb{Z})$.) 5. Suppose A is a unital commutative ring of characteristic p>0, where p is prime. Prove that, for any $x, y \in A$, $(x+y) = x+y^{p}$. (Hint. You are allowed to use binomial expansion without proof.

Homework 2 Friday, April 13, 2018 10:46 AM $(x+y)^n = \sum_{i=n}^n \binom{n}{i} x^i y^{n-i}$ where $\binom{n}{i} = \frac{n!}{i! (n-i)!}$, and $\binom{n}{i} \in \mathbb{Z}$ Prove $p|\binom{P}{i}$ if $\sigma < i < p$ and p is prime. Deduce the claim.) 6 (a) Find a zero-divisor in \mathbb{Z}_5 [i] = $\{a, b \in \mathbb{Z}_5\}$ where (a+bi)(c+di) = (ac-bd) + (ad+bc)i. (You do not need to show it is a ring.) (D) Show that $\chi^2 + 1$ has no zero in \mathbb{Z}_{+2} . ○ Show that, if either a≠o or b≠o in Z₇, then a²+b²≠o in \mathbb{Z}_{7} (d) Show that Z, [i] = {a+bi | a, b \in Z, } is a field. (<u>Hint</u>. \bigcirc if $a \neq o$, then $a^2 + b^2 = a^2 \left(1 + \left(\frac{b}{a} \right)^2 \right)$; use \bigcirc . (1) It is enough to show Z, [i] is an integral domain. (why?) $(a+bi)(c+di) = o \implies (a+bi)(a-bi)(c-di) = o$ =) $(a^2+b^2)(c^2+d^2) = 0$ in \mathbb{Z}_7 use (c) to show either a+bi=o or c+di=o.)