Math 103B HWZ Solution.
1. (a)
$$x^{n} - x - 2 = (x + 1)(x - 2) = 0$$

1] is prime $\Rightarrow \mathbb{Z}_{7}$ is integral domain
 $\Rightarrow x + 1 = 0$ or $x - 2 = 0$.
 $\Rightarrow x = 10$ or $x - 2 = 0$.
 $\Rightarrow x = 10$ or $x - 2 = 0$.
 $\Rightarrow x = 10$ or $x - 2 = 0$.
 $\Rightarrow x = 10$ or $x - 2 = 0$.
 $\Rightarrow x = 10$ or $x - 2 = 0$.
 $\Rightarrow x = 10$ or $x - 2 = 0$.
For example, $3 \neq 0$. $b \neq 0$ but $3 \times b = 0$.
Except for $x = 2$ and $x = 10$, $x = 5$ is also a solution since $(5+1)(5-2) = 0$.
2. We denote the characteristic of a ring by C.
 \cdot For $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$.
 ψ (m, n) $\in \mathbb{Z}_{4} \times \mathbb{Z}_{6}$.
 ψ (m, n) $\in \mathbb{Z}_{4} \times \mathbb{Z}_{6}$.
 ψ (m, n) $\in \mathbb{Z}_{4} \times \mathbb{Z}_{6}$.
 $12 = (0, c) = (0, c) = (0, c) \Rightarrow 4 = 0$.
 $C = (0, c) = (0, c) = (0, c) \Rightarrow 6 = 0$.
 $C = (0, c) = (0, c) = (0, c) \Rightarrow 6 = 0$.
 $C = (0, c) = (0, c) = (0, c) \Rightarrow 6 = 0$.
 $C = (0, 1, c) = (0, c, c) = (0, c, 0) \Rightarrow 2 = 2 = 2$.
On the other hand, $C = (1, c, 0) = (1, c, 0) = (0, c, 0) \Rightarrow 2 = 2 = 2$.
 $C = (0, 1, c) = (0, c, c) = (0, c, 0) \Rightarrow 6 = 0$.
 $C = (0, 1, c) = (0, c, c) = (0, c, 0) \Rightarrow 6 = 0$.
 $C = (0, 1, c) = (0, c, c) = (0, c, 0) \Rightarrow 6 = 0$.
 $\Rightarrow c = 7 = 2$.
Remark : you could also use the fact that the characteristic of a mainal ring is the order
of (1, 1) in $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ And (1, 1, 1) in $\mathbb{Z}_{6} \times \mathbb{Z}_{6} \mathbb{Z}_{7}$.

(a+b) (c+d) (z) = (ac+2bd) + (ad+bc) (z)

3. @ · First since (a+b52)+(c+d52) = (A+c)+(b+d)52

We know Q[12] is closed under addition and multiplication.

· Q [JZJ inherits its addition and multiplication from R so it automatically satisfies at b = b+a, at(b+a) = (a+b) + c, abc) = (abc), a(b+c) = ab + ac for a, b & Q [JZ].

• 0 is additive identity. for
$$A+b\sqrt{2} \in O(1\sqrt{2})$$
. $-(A+b\sqrt{2}) = -A-b\sqrt{2} \in O(1\sqrt{2})$.
• 1 is multiplicative identity, for $A+b\sqrt{2} \in O(1\sqrt{2})$.
⇒ $O(1\sqrt{2}) \in O(1\sqrt{2})$.

4. First we check f is homomorphism.
Let
$$\Lambda, b, c, d \in \mathbb{Z}$$
.
 $f((a+bJz)+(c+dJz)) = f((a+c)+(b+d)Jz) = \begin{bmatrix} a+c - 2(b+d) \\ b+d - a+c \end{bmatrix}$
 $f(a+bJz)+f(c+dJz) = \begin{bmatrix} a - 2b \\ b - a \end{bmatrix} + \begin{bmatrix} c - 2d \\ d - c \end{bmatrix} = \begin{bmatrix} a+c - 2(b+d) \\ b+d - a+c \end{bmatrix}$
 $\Rightarrow f((a+bJz)+(c+dE)) = f(A+bJz) + f(c+dJz).$
Also, $f((a+bJz)+(c+dE)) = f((a+c+2bd) + (ad+bc)Jz) = \begin{bmatrix} a+c+2bd - 2(ad+bc) \\ ad+bc - ac+2bd \end{bmatrix}$
 $f(a+bJz) + f(c+dJz) = \begin{bmatrix} a - 2b \\ b - a \end{bmatrix} \cdot \begin{bmatrix} c - 2d \\ d - c \end{bmatrix} = \begin{bmatrix} ac+2bd - 2(ad+bc) \\ bc + ad - bd + ac \end{bmatrix}$
 $\Rightarrow f((a+bJz)(c+dJz)) = f(a+bJz) \cdot f(c+dJz).$
Now we check $f B$ one to one, enough to show $kerf = \{o\}$.
Suppose $f(a+bJz) = o$, $a+bJz \in Z[Jz]$.
Then $\begin{bmatrix} a - 2b \\ b - a \end{bmatrix} = o$ $\Rightarrow a=o, b=o$. $\Rightarrow a+bJz = o \Rightarrow kerf = \{o\}$
 \therefore Every $\begin{bmatrix} a - b \\ b - a \end{bmatrix}$ in codomain has preimage $a+bJz \in Z[Jz]$.
Hence f is onto.
 $\Rightarrow f$ is isomorphism of rings.

5. by binomial formula,

$$(x+y)^{p} = \binom{p}{x^{p}y^{\circ}} + \binom{p}{x^{p+1}y^{\circ}} + \dots + \binom{p}{i} x^{p-i}y^{i} + \dots + \binom{p}{p} x^{o}y^{p}.$$

$$\forall i, o < i < p, we have P | \binom{p}{i}.$$

$$\Rightarrow \binom{p}{i} x^{p-i}y^{i} = o \quad \forall i. o < i < p, since A has characteristic P.$$

$$\Rightarrow (x+y)^{p} = x^{p} + y^{p}.$$

_

Remark .
$$\forall i. s.t. \theta < i < 0, p \mid {\binom{p}{i}}.$$

 $Proof: \binom{p}{i} = \frac{p!}{i! (p-i)!}$
 $\implies p! = {\binom{p}{i}}i! (p-i)!$
 $P \text{ divides one of the factors on the right hand side.}$
 $p \dagger i!. p \dagger (p-i)! \sin(e i < p, p-i < p.)$
 $\implies p \text{ has to divide } {\binom{p}{i}}.$

b. (a)
$$5 = 1^{2} + 2^{2} = 1 - (2i)^{2} = (1+2i)(1-2i).$$

 $\Rightarrow In Z_{5}[i], 1+2i, 1-2i \neq 0$ but $(1+2i)(1-2i) = 0.$
(b) $x = 0$ 1 2 3 4 5 6
 $1+x^{2}$ 1 2 5 3 3 4 2
 $\Rightarrow 1+x^{2}$ has no solution in Z_{7} .
(c) We can assume $a \neq 0$ (the case $b \neq 0$ is done similarly).
 Z_{7} is a field since 7 is prime and $a \neq 0$ implies it makes sense to
 $tA|k$ ubout a^{-1} .
 $a^{2} + b^{2} = a^{2}(1 + (ba^{-1})^{2}) = 0 \Rightarrow 1 + (ba^{-1})^{2} = 0$ in Z_{7} .
 b since Z_{7} has no zero divisor and $a \neq 0$.
But (b) shows that there is no such ba^{-1} .
 $\Rightarrow a^{2} + b^{2}$ is never 0 in Z_{7} .
(c) Z_{7} is finite, $i^{2} = -1 \Rightarrow Z_{7}[i]$ is finite ring.
To show $Z_{7}[i]$ is field, it's enough to show $Z_{7}[i]$ is integral domain.

