Math 103B HW2 Solution.
1.(a) $x^{2}-x-2=(x+1)(x-2)=0$

17 is prime $\Rightarrow \mathbb{Z}, 7$ is integral domain

$$
\Rightarrow x+1=0 \text { or } x-2=0
$$

$\Rightarrow x=16$ or $x=2$ are the two solutions.
(b) If is not prime, \mathbb{Z}_{18} has zero divisors.

For example, $3 \neq 0.6 \neq 0$ but $3 \times b=0$.
Except for $x=2$ and $x=16, x=5$ is also a solution $\operatorname{since}(5+1)(5-2)=0$.
2. We denote the charateristic of a ring by c.

- For $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$.

$$
\forall(m, n) \in \mathbb{Z}_{4} \times \mathbb{Z}_{b}, \quad 12(m, n)=(12 m, 12 n)=(0,0) \Rightarrow c \leq 12
$$

On the other hand
For $\mathbb{Z} 6 \times \mathbb{Z} 8 \times \mathbb{Z} q$.

$$
\forall(m, n, k) \in \mathbb{Z}_{b} \times \mathbb{Z}_{8} \times \mathbb{Z}_{q}, \quad 7_{2}(m, n, k)=(72 m, 72 n, 72 k)=(0,0,0) \Rightarrow c \leqslant 72
$$

 of the unity if it's finite. So to compute characteristic, it's enough to figure ont the order of $(1,1)$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ and $(1,1,1)$ in $\mathbb{Z}_{6} \times \mathbb{Z}_{8} \times \mathbb{Z}_{9}$.
3. (a). First since $(a+b \sqrt{2})+(c+d \sqrt{2})=(a+c)+(b+d) \sqrt{2}$

$$
(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}
$$

We know $Q[\sqrt{2}]$ is closed under addition and multiplication.
Q[Js J inherits its addition and multiplication from \mathbb{R} so it automatically satiesfils $a+b=b+a, a+(b+c)=(a+b)+c, \quad a(b c)=l a b>c, \quad a(b+c)=a b+a c$ for $a, b \in Q[\sqrt{2}]$.

- 0 is additive identity, for $a+b \sqrt{2} \in Q[\sqrt{2}] .-(a+b \sqrt{2})=-a-b \sqrt{2} \in Q[\sqrt{2}]$.
- 1 is multiplicative identity, for $a+b \sqrt{2} \in \mathbb{Q}[\sqrt{2}], \frac{1}{a+b \sqrt{2}}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}} \in Q[\sqrt{2}]$.
$\Rightarrow Q[\sqrt{2}]$ is a field.
(b) Define map $i: \mathbb{Z}[\sqrt{2}] \longrightarrow Q[\sqrt{2}]$
note that $a^{2}-2 b^{2} \neq 0$

$$
m+n \sqrt{2} \longmapsto m+n \sqrt{2}
$$

Then clearly i is injective ring homomorphism.

$$
\begin{aligned}
& \forall a+b \sqrt{2}=\frac{\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}} \sqrt{2}}{} \text { with } p_{i} q_{i} \in \mathbb{Z} \\
& a+b \sqrt{2}=\frac{p_{1} q_{2}+q_{1} p_{2} \sqrt{2}}{q_{1} q_{2}} \text { with } q_{1} q_{2} \in \mathbb{Z}<\mathbb{Z}[\sqrt{2}], p_{1} q_{2}+q_{1} p_{2} \sqrt{2} \in \mathbb{Z}[\sqrt{2}] .
\end{aligned}
$$

$\Rightarrow Q[\sqrt{2}]$ is the field of fraction of $\mathbb{Z}[\sqrt{2}]$.
4. First we check f is homomorphism.

Let $a, b, c, d \in \mathbb{Z}$.

$$
\begin{aligned}
& f((a+b \sqrt{2})+(c+d \sqrt{2}))=f((a+c)+(b+d) \sqrt{2})=\left[\begin{array}{cc}
a+c & 2(b+d) \\
b+d & a+c
\end{array}\right] \\
& f(a+b \sqrt{2})+f(c+d \sqrt{2})=\left[\begin{array}{ll}
a & 2 b \\
b & a
\end{array}\right]+\left[\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right]=\left[\begin{array}{cc}
a+c & 2(b+d) \\
b+d & a+c
\end{array}\right] \\
& \Rightarrow f((a+b \sqrt{2})+(c+d \sqrt{2}))=f(a+b \sqrt{2})+f(c+d \sqrt{2}) .
\end{aligned}
$$

$$
\text { Also, f(}(a+b \sqrt{2})(c+d \sqrt{2}))=f((a c+2 b d)+(a d+b c) \sqrt{2})=\left[\begin{array}{ll}
a c+2 b d & 2(a d+b c) \\
a d+b c & a c+2 b d
\end{array}\right]
$$

$$
\begin{aligned}
& f(a+b \sqrt{2}) \cdot f(c+d \sqrt{2})=\left[\begin{array}{ll}
a & 2 b \\
b & a
\end{array}\right] \cdot\left[\begin{array}{ll}
c & 2 d \\
d & c
\end{array}\right]=\left[\begin{array}{ll}
a c+2 b d & 2(a d+b c) \\
b c+a d & 2 b d+a c
\end{array}\right] \\
& \Rightarrow f((a+b \sqrt{2})(c+d \sqrt{2}))=f(a+b \sqrt{2}) \cdot f(c+d \sqrt{2})
\end{aligned}
$$

- Now we check f is one to one, enough to show $\operatorname{ker} f=\{0\}$.

Suppose $f(a+b \sqrt{2})=0, a+b \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$.
Then $\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]=0 \Rightarrow a=0, b=0 . \Rightarrow a+b \sqrt{2}=0 \Rightarrow \operatorname{kerf}=\{0\}$
Every $\left[\begin{array}{ll}a & 2 \\ b & a\end{array}\right]$ in codomain has preimage $a+b \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$.
Hence f is onto.
$\Rightarrow f$ is isomorphism of rings.
5. By binomial formula,

$$
(x+y)^{p}=\binom{p}{0} x^{p} y^{0}+\binom{p}{1} x^{p-1} y^{1}+\cdots+\binom{p}{i} x^{p-i} y^{i}+\cdots+\binom{p}{p} x^{0} y^{p} .
$$

$\forall i, 0<i<p$, we have $p \left\lvert\,\left(\frac{p}{i}\right)\right.$.
$\Rightarrow\binom{p}{i} \times{ }^{p-i} y^{i}=0 \quad \forall i$. $0<i<p$, since A has characteristic p.

$$
\Rightarrow \quad(x+y)^{p}=x^{p}+y^{p}
$$

Remark. $\forall i$ s.t. $0<i<D, P \left\lvert\,\binom{ p}{i}\right.$.
Proof: $\binom{p}{i}=\frac{p!}{i!(p-i)!}$

$$
\Rightarrow p!=\binom{p}{i} i!(p-i)!
$$

P divides one of the factors on the right hand side.
$p+i!$. $p+(p-i)$! since $i<p, p-i<p$.
$\Rightarrow p$ has to divide $\left(p_{i}\right)$.
b. (a) $5=1^{2}+2^{2}=1-(2 i)^{2}=(1+2 i)(1-2 i)$.
$\Rightarrow \operatorname{In} \mathbb{Z}_{5}[i], 1+2 i, 1-2 i \neq 0$ but $(1+2 i)(1-2 i)=0$.
(b)

x	0	1	2	3	4	5	6
$1+x^{2}$	1	2	5	3	3	4	2

$\Rightarrow 1+x^{2}$ has no solution in \mathbb{Z}_{7}.
(c) We can assume $a \neq 0$ (the case $b \neq 0$ is done similarly). \mathbb{Z}_{7} is a field since 7 is prime and $a \neq 0$ implies it makes sense to talk about a^{-1}.

$$
a^{2}+b^{2}=a^{2}\left(1+\left(b a^{-1}\right)^{2}\right)=0 \Rightarrow 1+\left(b a^{-1}\right)^{2}=0 \text { in } \mathbb{Z}_{7}
$$

since \mathbb{Z}_{7} has no zero divisor and $a=0$.
But (6) shows that there is no such $b n^{-1}$.
$\Rightarrow a^{2}+b^{2}$ is never 0 in \mathbb{Z}_{7}.
(d) \mathbb{Z}_{7} is finite. $i^{2}=-1 \Rightarrow \mathbb{Z}_{7}[i]$ is finite ring.

To show $\mathbb{Z}_{7}[i]$ is field, it's enough to show $\mathbb{Z}_{7}[i]$ is integral domain.

Suppose $(a+b i)(c+d i)=0$.
Then $(a-b i)(a+b i)(c+d i)\left(c-d_{i}\right)=0$

$$
\begin{aligned}
& \Rightarrow\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=0 \\
& \Rightarrow a^{2}+b^{2}=0 \text { or } c^{2}+d^{2}=0
\end{aligned}
$$

$\Rightarrow B y$ (c), $a=b=0$ or $c=d=0$
i.e. $a+b i=0$ or $c+d i=0 . \Rightarrow \mathbb{Z}_{7}[i]$ is an integral domain.

