1. Suppose R_{1}, \ldots, R_{n} are rings. Prove that R_{1}, \ldots, R_{n} are unital if and only if $R_{1} \times \cdots \times R_{n}$ is unital.
2. Suppose R is a unital ring. An element x of R is called a unit if it has a multiplicative inverse; that means $\exists x^{\prime} \in R$ such that $x x^{\prime}=x^{\prime} x=1_{R}$.

Let $U(R)$ be the set of all the units of R.
(a) Prove that $U(R)$ is closed under multiplication.
(b) Prove that $(U(R), \cdot)$ is a group.
(c) Suppose R_{i} 's are unital rings. Prove that

$$
U\left(R_{1} \times \cdots \times R_{n}\right)=U\left(R_{1}\right) \times \cdots \times U\left(R_{n}\right)
$$

(d) Find $U(\mathbb{Z} \times \mathbb{Q})$.
3. Show that $\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$ is ring.
4. As in problem 3 one can show $F=\{a+b \sqrt{3} \mid a, b \in Q\}$ is a ring. Show that $U(F)=F \backslash\{0\}$; that means any non-zero element is a unit.

Homework 1
5. For a ring R, let $R[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{0}^{n \in \mathbb{Z}^{20}}, \cdots, a_{n} \in R\right\}$ be the ring of polynomials with coefficients in R and indeterminant x. We add and multiply polynomials as usual.
(a) Show that $U(\mathbb{Z}[x])=\{ \pm 1\}$.
(b) Show that $2 x+1 \in U\left(\mathbb{Z}_{8}[x]\right)$.
6. Suppose A is a ring with unity 1. Suppose there is $a_{0} \in A$ such that $a_{0}^{2}=1$. Let $B:=\left\{a_{0} r a_{0} \mid r \in A\right\}$. Prove that B is a subring of A.

