Math 103B
 Homework \# 1 Solutions

Due on April 11th
Professer Golsefidy

Prepared by: Rosemary Elliott Smith

Problem 1

Let R_{1}, \cdots, R_{n} be rings. First assume $R_{1} \times \cdots \times R_{n}$ is unital. Then $\exists a:=\left(a_{1}, \cdots, a_{n}\right) \in R_{1} \times \cdots \times R_{n}$ such that $\forall b \in R_{1} \times \cdots \times R_{n}, a \cdot b=b \cdot a=b$. Take $b_{i} \in R_{i}$, and define $b=\left(0, \cdots 0, b_{i}, 0, \cdot, 0\right)$, where b_{i} is in the i th component. Then $a \cdot b=\left(0, \cdots, 0, a_{i} \cdot b_{i}, 0, \cdots, 0\right)=b$, and so comparing components we see $a_{i} \cdot b_{i}=b_{i}$, and similarly for $b \cdot a=b \Longrightarrow b_{i} a_{i}=b_{i}$. Therefore, $a_{i} \in R_{i}$ is the unity of R_{i}. Now let R_{i} be unital for all $i \in\{1, \cdots, n\}$, and denote the unity of R_{i} by e_{i}. Take $b:=\left(b_{1}, \cdots, b_{n}\right) \in R_{1} \times \cdots \times R_{n}$, and consider $\left(e_{1}, \cdots, e_{n}\right) \cdot b=\left(e_{1} \cdot b_{1}, \cdots, e_{n} \cdot b_{n}\right)=b=\left(b_{1} \cdot e_{1}, \cdots, b_{n} \cdot e_{n}\right)=b \cdot\left(e_{1}, \cdots, e_{n}\right)$ by the definition of unity in each R_{i}. Therefore, $\left(e_{1}, \cdots, e_{n}\right)$ is the unity of $R_{1} \times \cdots \times R_{n}$.

Problem 2

Let R be a ring. Note that the set of units $U(R)$ is also denoted R^{\times}. Clearly, $1_{R} \cdot 1_{R}=1_{R}$, so $1_{R} \in U(R)$, so $U(R) \neq \emptyset$. Take $a, b \in U(R)$. We know $\exists a^{-1}, b^{-1} \in R$. As $(a \cdot b) \cdot\left(b^{-1} a^{-1}\right)=a \cdot\left(b \cdot b^{-1}\right) \cdot a^{-1}=1_{R}=$ $b^{-1} \cdot\left(a^{-1} \cdot a\right) \cdot b=\left(b^{-1} \cdot a^{-1}\right) \cdot(a \cdot b)$, we see $a \cdot b \in U(R)$. As multiplication in the ring is associative, so too is multiplication in $U(R)$. As $1_{R} \cdot a=a \cdot 1_{R}=a, \forall a \in R$, and $U(R) \subseteq R, 1_{R}$ is the identity of $U(R)$. Finally, if $a \in U(R), \exists a^{-1} \in R$, and as $\left(a^{-1}\right)^{-1}=a, a^{-1} \in U(R)$, and so $U(R)$ has inverses.

As R_{i} are unital for $i \in\{1, \cdots, n\}$, by Problem 1 we know $R_{1} \times \cdots \times R_{n}$ is unital. Let 1 denote the unity of $R_{1} \times \cdots \times R_{n}$, and e_{i} be the unity of $R_{i}, \forall i \in\{1, \cdots, n\}$ (note that again by Problem $1,1=\left(e_{1}, \cdots, e_{n}\right)$). We will show $U\left(R_{1} \times \cdots \times R_{n}\right)=U\left(R_{1}\right) \times \cdots \times U\left(R_{n}\right)$. First take $b:=\left(b_{1}, \cdots, b_{n}\right) \in U\left(R_{1} \times \cdots \times R_{n}\right)$. Then $\exists b^{-1}:=\left(a_{1}, \cdots, a_{n}\right) \in R_{1} \times \cdots \times R_{n}$, and so $b \cdot b^{-1}=1=b^{-1} \cdot b \Longrightarrow a_{i} \cdot b_{i}=b_{i} \cdot a_{i}=e_{i}, \forall i \in\{1, \cdots, n\}$. Therefore, $b_{i} \in U\left(R_{i}\right), \forall i$, and so $b \in U\left(R_{1}\right) \times \cdots \times U\left(R_{n}\right)$. Now take $b=\left(b_{1}, \cdots, b_{n}\right) \in U\left(R_{1}\right) \times \cdots \times U\left(R_{n}\right)$. Let $a=\left(b_{1}^{-1}, \cdots, b_{n}^{1}\right)$. Then $a \cdot b=\left(b_{1}^{-1} \cdot b_{1}, \cdots, b_{n}^{-1} \cdot b_{n}\right)=\left(e_{1}, \cdots, e_{n}\right)=1=b \cdot a$, and so $b \in U\left(R_{1} \times \cdots \times R_{n}\right)$.

By part c, it suffices to find $U(\mathbb{Z}), U(\mathbb{Q})$. It is easy to check that $U(\mathbb{Z})=\{ \pm 1\}$ and $U(\mathbb{Q})=\mathbb{Q} \backslash\{0\}$ under the normal multiplication (as if $a \in \mathbb{Z}$ such that $\exists b \in \mathbb{Z}$ where $a \cdot b=1$, then $a= \pm 1$ as $b \in \mathbb{Z}$ and the all non-zero elements $q \in \mathbb{Q}$ have inverse $1 / q)$. Therefore, $U(\mathbb{Z} \times \mathbb{Q})=\{ \pm 1\} \times \mathbb{Q} \backslash\{0\}$.

Problem 3

Let $\mathbb{Z}[\sqrt{3}]:=\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$. We will show this is a ring. Note that $\mathbb{Z}[\sqrt{3}] \subset \mathbb{R}$, and so it suffices to use the subring criterion, as \mathbb{R} is a ring. Note that $0 \in \mathbb{Z}[\sqrt{3}]$, so it is non-empty. Now take $a_{1}+b_{1} \sqrt{3}, a_{2}+b_{2} \sqrt{3} \in$ $\mathbb{Z}[\sqrt{3}]$. Then $\left(a_{1}+b_{1} \sqrt{3}\right)-\left(a_{2}+b_{2} \sqrt{3}\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) \sqrt{3} \in \mathbb{Z}[\sqrt{3}]$, as the sum of two integers is an integer. Similarly, $\left(a_{1}+b_{1} \sqrt{3}\right)\left(a_{2}+b_{2} \sqrt{3}\right)=\left(a_{1} a_{2}+3 b_{1} b_{2}\right)+\left(a_{1} b_{2}+b_{1} a_{2}\right) \sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. Therefore this is a ring. More formally, this proof can also be constructed from the ground up without the subring criterion, checking associativity, distributivity, etc.

Problem 4

Take $q:=a+b \sqrt{3} \in F \backslash\{0\}$. It suffices to show q has an inverse in F. Note that a, b cannot both be zero. Therefore, as $q \neq 0, q \in F \subset \mathbb{R}$, we can see that $\frac{1}{a+b \sqrt{3}}=\frac{1}{a+b \sqrt{3}} \cdot \frac{a-b \sqrt{3}}{a-b \sqrt{3}}=\frac{a-b \sqrt{3}}{a^{2}-3 b^{2}}$. Note that this is valid as $a+b \sqrt{3} \neq 0$, and $0 \neq a-b \sqrt{3}$ because $a, b \in \mathbb{Q}$ and $\sqrt{3} \notin \mathbb{Q}$ (so if $a=b \sqrt{3}$ we have a contradiction). Therefore, as \mathbb{R} is an integral domain (i.e., no zero divisors), $a^{2}-3 b^{2} \neq 0$. Another way to see this is because if $a^{2}-3 b^{2}=0$, then $a^{2}=3 b^{2} \Longrightarrow a= \pm \sqrt{3} b \Longrightarrow \sqrt{3} \in \mathbb{Q}$, a contradiction. In either case, we see that the element $\frac{a}{a^{2}-3 b^{2}}-\frac{b}{a^{2}-3 b^{2}} \sqrt{3}=(a+b \sqrt{3})^{-1}$, and as $a, b \in \mathbb{Q}$, so too is $\frac{a}{a^{2}-3 b^{2}}, \frac{b}{a^{2}-3 b^{2}} \in \mathbb{Q}$.
Problem 5
In this problem we show $U(\mathbb{Z}[x])=\{ \pm 1\}=U(\mathbb{Z})$ (the last equality is done in Problem 2, part d). Take $a \in U(\mathbb{Z}) \subseteq \mathbb{Z}[x]$. Then $\exists b \in \mathbb{Z} \subseteq \mathbb{Z}[x]$ such that $a b=1=b a$, and so $a \in U(\mathbb{Z}[x])$, and $\{ \pm 1\} \subseteq U(\mathbb{Z}) \subseteq U(\mathbb{Z}[x])$. First note that, given as \mathbb{Z} is an integral domain, there are no zero divisors. Take $p(x):=a_{n} x^{n}+\cdots+a_{0} \in U(\mathbb{Z}[x])$, where $a_{n} \neq 0$ (we can do this as zero is not invertible, so there will always be a maximum non-zero coefficient). Then we know $\exists q(x):=b_{m} x^{m}+\cdots+b_{0} \in U(\mathbb{Z}[x])$ such that $p(x) q(x)=q(x) p(x)=1$ (and again as with $\left.p(x), b_{m} \neq 0\right)$. Assume for contradiction that $n>0$. Then, ignoring the intermediate coefficients for now, we see $a_{n} b_{m} x^{n+m}=0$, and so $a_{n} b_{m}=0$. As $a_{n} \neq 0 \neq b_{m}$, and \mathbb{Z} has no zero divisors, we have a contradiction, and therefore, $n=0$. A similar argument shows $m=0$. Therefore, $p(x)=a_{0}, q(x)=b_{0}$, and $a_{0} b_{0}=1$. But as $a_{0} \in \mathbb{Z}$, this implies $a_{0} \in U(\mathbb{Z})$, so $U(\mathbb{Z}) \subseteq U(\mathbb{Z}[x])$.

Now consider $2 x+1 \in \mathbb{Z}_{8}[x]$. We will see $p(x)=4 x^{2}+6 x+1$ is $(2 x+1)^{-1}$. As $\mathbb{Z}_{8}[x]$ is commutative, it suffices to show $(2 x+1) p(x)=1$ (as 1 is the unity of $\mathbb{Z}_{8}[x]$). We do this by computation$(2 x+1)\left(4 x^{2}+6 x+1\right)=8 x^{3}+(4+12) x^{2}+(2+6) x+1=8 x^{3}+16 x^{2}+8 x+1$, and as $16 \equiv 8 \equiv 0 \bmod 8$, $(2 x+1)\left(4 x^{2}+6 x+1\right)=1$.

Problem 6

First note that as $1_{A} \in A, a_{0} \cdot 1_{A} \cdot a_{0}=a_{0}^{2}=1 \in B$, and so $B \neq \emptyset$. Take $b_{1}, b_{2} \in B$. By the subring criterion, it suffices to check $b_{1}-b_{2}, b_{1} \cdot b_{2} \in B$. We know $b_{1}=a_{0} b_{1}^{\prime} a_{0}, b_{2}=a_{0} b_{2}^{\prime} a_{0}$, for some $b_{1}^{\prime}, b_{2}^{\prime} \in A$. Now consider $b_{1} \cdot b_{2}=\left(a_{0} b_{1}^{\prime} a_{0}\right) \cdot\left(a_{0} b_{2}^{\prime} a_{0}\right)=a_{0}\left(b_{1}^{\prime} a_{0} a_{0} b_{2}^{\prime}\right) a_{0}=a_{0}\left(b_{1}^{\prime} b_{2}^{\prime}\right) a_{0}$ as multiplication is associative and $a_{0}^{2}=1$. As $b_{1}^{\prime} b_{2}^{\prime} \in A$, we see $b_{1} \cdot b_{2} \in B$. Now consider $b_{1}-b_{2}=a_{0} b_{1}^{\prime} a_{0}-a_{0} b_{2}^{\prime} a_{0}=a_{0}\left(b_{1}^{\prime} a_{0}-b_{2}^{\prime} a_{0}\right)=a_{0}\left(b_{1}^{\prime}-b_{2}^{\prime}\right) a_{0} \in B$ as A has distribution and $b_{1}^{\prime}-b_{2}^{\prime} \in A$. Thus, B is a subring. $\square \quad$ Side note: $a_{0}^{2}=1 \Longrightarrow a_{0}=a_{0}^{-1}$, so $B=a_{0} A a_{0}^{-1}$, though note that A isn't a multiplicative group.

