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Problem 1
Let R1, · · · , Rn be rings. First assume R1×· · ·×Rn is unital. Then ∃a := (a1, · · · , an) ∈ R1×· · ·×Rn such

that ∀b ∈ R1 × · · · × Rn, a · b = b · a = b. Take bi ∈ Ri, and define b = (0, · · · 0, bi, 0, ·, 0), where bi is in the

ith component. Then a · b = (0, · · · , 0, ai · bi, 0, · · · , 0) = b, and so comparing components we see ai · bi = bi,

and similarly for b · a = b =⇒ biai = bi. Therefore, ai ∈ Ri is the unity of Ri. Now let Ri be unital for

all i ∈ {1, · · · , n}, and denote the unity of Ri by ei. Take b := (b1, · · · , bn) ∈ R1 × · · · × Rn, and consider

(e1, · · · , en) · b = (e1 · b1, · · · , en · bn) = b = (b1 · e1, · · · , bn · en) = b · (e1, · · · , en) by the definition of unity in

each Ri. Therefore, (e1, · · · , en) is the unity of R1 × · · · ×Rn.

Problem 2
Let R be a ring. Note that the set of units U(R) is also denoted R×. Clearly, 1R · 1R = 1R, so 1R ∈ U(R),

so U(R) 6= ∅. Take a, b ∈ U(R). We know ∃a−1, b−1 ∈ R. As (a · b) · (b−1a−1) = a · (b · b−1) · a−1 = 1R =

b−1 · (a−1 · a) · b = (b−1 · a−1) · (a · b), we see a · b ∈ U(R). As multiplication in the ring is associative, so

too is multiplication in U(R). As 1R · a = a · 1R = a, ∀a ∈ R, and U(R) ⊆ R, 1R is the identity of U(R).

Finally, if a ∈ U(R), ∃a−1 ∈ R, and as (a−1)−1 = a, a−1 ∈ U(R), and so U(R) has inverses.

As Ri are unital for i ∈ {1, · · · , n}, by Problem 1 we know R1× · · ·×Rn is unital. Let 1 denote the unity of

R1 × · · · ×Rn, and ei be the unity of Ri, ∀i ∈ {1, · · · , n} (note that again by Problem 1, 1 = (e1, · · · , en)).

We will show U(R1×· · ·×Rn) = U(R1)×· · ·×U(Rn). First take b := (b1, · · · , bn) ∈ U(R1×· · ·×Rn). Then

∃b−1 := (a1, · · · , an) ∈ R1 × · · · ×Rn, and so b · b−1 = 1 = b−1 · b =⇒ ai · bi = bi · ai = ei, ∀i ∈ {1, · · · , n}.
Therefore, bi ∈ U(Ri), ∀i, and so b ∈ U(R1)×· · ·×U(Rn). Now take b = (b1, · · · , bn) ∈ U(R1)×· · ·×U(Rn).

Let a = (b−11 , · · · , b1n). Then a·b = (b−11 ·b1, · · · , b−1n ·bn) = (e1, · · · , en) = 1 = b·a, and so b ∈ U(R1×· · ·×Rn).

By part c, it suffices to find U(Z), U(Q). It is easy to check that U(Z) = { ±1} and U(Q) = Q\{0}
under the normal multiplication (as if a ∈ Z such that ∃b ∈ Z where a · b = 1, then a = ±1 as b ∈ Z and the

all non-zero elements q ∈ Q have inverse 1/q). Therefore, U(Z×Q) = {±1} ×Q\{0}.
Problem 3
Let Z[

√
3] := {a+ b

√
3 | a, b ∈ Z}. We will show this is a ring. Note that Z[

√
3] ⊂ R, and so it suffices to use

the subring criterion, as R is a ring. Note that 0 ∈ Z[
√

3], so it is non-empty. Now take a1+b1
√

3, a2+b2
√

3 ∈
Z[
√

3]. Then (a1 + b1
√

3) − (a2 + b2
√

3) = (a1 − a2) + (b1 − b2)
√

3 ∈ Z[
√

3], as the sum of two integers is

an integer. Similarly, (a1 + b1
√

3)(a2 + b2
√

3) = (a1a2 + 3b1b2) + (a1b2 + b1a2)
√

3 ∈ Z[
√

3]. Therefore this is

a ring. More formally, this proof can also be constructed from the ground up without the subring criterion,

checking associativity, distributivity, etc.

Problem 4
Take q := a + b

√
3 ∈ F\{0}. It suffices to show q has an inverse in F . Note that a, b cannot both be zero.

Therefore, as q 6= 0, q ∈ F ⊂ R, we can see that 1
a+b
√
3

= 1
a+b
√
3
· a−b

√
3

a−b
√
3

= a−b
√
3

a2−3b2 . Note that this is valid

as a + b
√

3 6= 0, and 0 6= a − b
√

3 because a, b ∈ Q and
√

3 /∈ Q (so if a = b
√

3 we have a contradiction).

Therefore, as R is an integral domain (i.e., no zero divisors), a2−3b2 6= 0. Another way to see this is because

if a2 − 3b2 = 0, then a2 = 3b2 =⇒ a = ±
√

3b =⇒
√

3 ∈ Q, a contradiction. In either case, we see that the

element a
a2−3b2 −

b
a2−3b2

√
3 = (a + b

√
3)−1, and as a, b ∈ Q, so too is a

a2−3b2 ,
b

a2−3b2 ∈ Q.

Problem 5
In this problem we show U(Z[x]) = {±1} = U(Z) (the last equality is done in Problem 2, part d).

Take a ∈ U(Z) ⊆ Z[x]. Then ∃b ∈ Z ⊆ Z[x] such that ab = 1 = ba, and so a ∈ U(Z[x]), and

{±1} ⊆ U(Z) ⊆ U(Z[x]). First note that, given as Z is an integral domain, there are no zero divisors.

Take p(x) := anx
n + · · ·+ a0 ∈ U(Z[x]), where an 6= 0 (we can do this as zero is not invertible, so there will

always be a maximum non-zero coefficient). Then we know ∃q(x) := bmxm + · · · + b0 ∈ U(Z[x]) such that

p(x)q(x) = q(x)p(x) = 1 (and again as with p(x), bm 6= 0). Assume for contradiction that n > 0. Then,

ignoring the intermediate coefficients for now, we see anbmxn+m = 0, and so anbm = 0. As an 6= 0 6= bm,

and Z has no zero divisors, we have a contradiction, and therefore, n = 0. A similar argument shows m = 0.

Therefore, p(x) = a0, q(x) = b0, and a0b0 = 1. But as a0 ∈ Z, this implies a0 ∈ U(Z), so U(Z) ⊆ U(Z[x]).
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Now consider 2x + 1 ∈ Z8[x]. We will see p(x) = 4x2 + 6x + 1 is (2x + 1)−1. As Z8[x] is commu-

tative, it suffices to show (2x + 1)p(x) = 1 (as 1 is the unity of Z8[x]). We do this by computation–

(2x + 1)(4x2 + 6x + 1) = 8x3 + (4 + 12)x2 + (2 + 6)x + 1 = 8x3 + 16x2 + 8x + 1, and as 16 ≡ 8 ≡ 0 mod 8,

(2x + 1)(4x2 + 6x + 1) = 1.

Problem 6
First note that as 1A ∈ A, a0 ·1A ·a0 = a20 = 1 ∈ B, and so B 6= ∅. Take b1, b2 ∈ B. By the subring criterion,

it suffices to check b1− b2, b1 · b2 ∈ B. We know b1 = a0b
′
1a0, b2 = a0b

′
2a0, for some b′1, b

′
2 ∈ A. Now consider

b1 · b2 = (a0b
′
1a0) · (a0b′2a0) = a0(b′1a0a0b

′
2)a0 = a0(b′1b

′
2)a0 as multiplication is associative and a20 = 1. As

b′1b
′
2 ∈ A, we see b1 · b2 ∈ B. Now consider b1 − b2 = a0b

′
1a0 − a0b

′
2a0 = a0(b′1a0 − b′2a0) = a0(b′1 − b′2)a0 ∈ B

as A has distribution and b′1 − b′2 ∈ A. Thus, B is a subring. Side note: a20 = 1 =⇒ a0 = a−10 , so

B = a0Aa
−1
0 , though note that A isn’t a multiplicative group.
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