Math 103B Homework # 1 Solutions

Due on April 11th

Professer Golsefidy

Prepared by: Rosemary Elliott Smith

Problem 1

Let R_1, \dots, R_n be rings. First assume $R_1 \times \dots \times R_n$ is unital. Then $\exists a := (a_1, \dots, a_n) \in R_1 \times \dots \times R_n$ such that $\forall b \in R_1 \times \cdots \times R_n$, $a \cdot b = b \cdot a = b$. Take $b_i \in R_i$, and define $b = (0, \cdots, 0, b_i, 0, \cdot, 0)$, where b_i is in the *i*th component. Then $a \cdot b = (0, \dots, 0, a_i \cdot b_i, 0, \dots, 0) = b$, and so comparing components we see $a_i \cdot b_i = b_i$, and similarly for $b \cdot a = b \implies b_i a_i = b_i$. Therefore, $a_i \in R_i$ is the unity of R_i . Now let R_i be unital for all $i \in \{1, \dots, n\}$, and denote the unity of R_i by e_i . Take $b := (b_1, \dots, b_n) \in R_1 \times \dots \times R_n$, and consider $(e_1, \dots, e_n) \cdot b = (e_1 \cdot b_1, \dots, e_n \cdot b_n) = b = (b_1 \cdot e_1, \dots, b_n \cdot e_n) = b \cdot (e_1, \dots, e_n)$ by the definition of unity in each R_i . Therefore, (e_1, \dots, e_n) is the unity of $R_1 \times \dots \times R_n$.

Problem 2

Let R be a ring. Note that the set of units U(R) is also denoted R^{\times} . Clearly, $1_R \cdot 1_R = 1_R$, so $1_R \in U(R)$, so $U(R) \neq \emptyset$. Take $a, b \in U(R)$. We know $\exists a^{-1}, b^{-1} \in R$. As $(a \cdot b) \cdot (b^{-1}a^{-1}) = a \cdot (b \cdot b^{-1}) \cdot a^{-1} = 1_R = 1_R$ $b^{-1} \cdot (a^{-1} \cdot a) \cdot b = (b^{-1} \cdot a^{-1}) \cdot (a \cdot b)$, we see $a \cdot b \in U(R)$. As multiplication in the ring is associative, so too is multiplication in U(R). As $1_R \cdot a = a \cdot 1_R = a$, $\forall a \in R$, and $U(R) \subseteq R$, 1_R is the identity of U(R). Finally, if $a \in U(R)$, $\exists a^{-1} \in R$, and as $(a^{-1})^{-1} = a$, $a^{-1} \in U(R)$, and so U(R) has inverses.

As R_i are unital for $i \in \{1, \dots, n\}$, by Problem 1 we know $R_1 \times \dots \times R_n$ is unital. Let 1 denote the unity of $R_1 \times \cdots \times R_n$, and e_i be the unity of $R_i, \forall i \in \{1, \cdots, n\}$ (note that again by Problem 1, $1 = (e_1, \cdots, e_n)$). We will show $U(R_1 \times \cdots \times R_n) = U(R_1) \times \cdots \times U(R_n)$. First take $b := (b_1, \cdots, b_n) \in U(R_1 \times \cdots \times R_n)$. Then $\exists b^{-1} := (a_1, \cdots, a_n) \in R_1 \times \cdots \times R_n, \text{ and so } b \cdot b^{-1} = 1 = b^{-1} \cdot b \implies a_i \cdot b_i = b_i \cdot a_i = e_i, \forall i \in \{1, \cdots, n\}.$ Therefore, $b_i \in U(R_i)$, $\forall i$, and so $b \in U(R_1) \times \cdots \times U(R_n)$. Now take $b = (b_1, \cdots, b_n) \in U(R_1) \times \cdots \times U(R_n)$. Let $a = (b_1^{-1}, \dots, b_n^1)$. Then $a \cdot b = (b_1^{-1} \cdot b_1, \dots, b_n^{-1} \cdot b_n) = (e_1, \dots, e_n) = 1 = b \cdot a$, and so $b \in U(R_1 \times \dots \times R_n)$.

By part c, it suffices to find $U(\mathbb{Z}), U(\mathbb{Q})$. It is easy to check that $U(\mathbb{Z}) = \{\pm 1\}$ and $U(\mathbb{Q}) = \mathbb{Q}\setminus\{0\}$ under the normal multiplication (as if $a \in \mathbb{Z}$ such that $\exists b \in \mathbb{Z}$ where $a \cdot b = 1$, then $a = \pm 1$ as $b \in \mathbb{Z}$ and the all non-zero elements $q \in \mathbb{Q}$ have inverse 1/q). Therefore, $U(\mathbb{Z} \times \mathbb{Q}) = \{\pm 1\} \times \mathbb{Q} \setminus \{0\}$.

Problem 3

Let $\mathbb{Z}[\sqrt{3}] := \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$. We will show this is a ring. Note that $\mathbb{Z}[\sqrt{3}] \subset \mathbb{R}$, and so it suffices to use the subring criterion, as \mathbb{R} is a ring. Note that $0 \in \mathbb{Z}[\sqrt{3}]$, so it is non-empty. Now take $a_1 + b_1\sqrt{3}, a_2 + b_2\sqrt{3} \in \mathbb{Z}$ $\mathbb{Z}[\sqrt{3}]$. Then $(a_1 + b_1\sqrt{3}) - (a_2 + b_2\sqrt{3}) = (a_1 - a_2) + (b_1 - b_2)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$, as the sum of two integers is an integer. Similarly, $(a_1 + b_1\sqrt{3})(a_2 + b_2\sqrt{3}) = (a_1a_2 + 3b_1b_2) + (a_1b_2 + b_1a_2)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. Therefore this is a ring. More formally, this proof can also be constructed from the ground up without the subring criterion, checking associativity, distributivity, etc. \square

Problem 4

Take $q := a + b\sqrt{3} \in F \setminus \{0\}$. It suffices to show q has an inverse in F. Note that a, b cannot both be zero. Therefore, as $q \neq 0, q \in F \subset \mathbb{R}$, we can see that $\frac{1}{a+b\sqrt{3}} = \frac{1}{a+b\sqrt{3}} \cdot \frac{a-b\sqrt{3}}{a-b\sqrt{3}} = \frac{a-b\sqrt{3}}{a^2-3b^2}$. Note that this is valid as $a + b\sqrt{3} \neq 0$, and $0 \neq a - b\sqrt{3}$ because $a, b \in \mathbb{Q}$ and $\sqrt{3} \notin \mathbb{Q}$ (so if $a = b\sqrt{3}$ we have a contradiction). Therefore, as \mathbb{R} is an integral domain (i.e., no zero divisors), $a^2 - 3b^2 \neq 0$. Another way to see this is because if $a^2 - 3b^2 = 0$, then $a^2 = 3b^2 \implies a = \pm\sqrt{3}b \implies \sqrt{3} \in \mathbb{Q}$, a contradiction. In either case, we see that the element $\frac{a}{a^2-3b^2} - \frac{b}{a^2-3b^2}\sqrt{3} = (a+b\sqrt{3})^{-1}$, and as $a, b \in \mathbb{Q}$, so too is $\frac{a}{a^2-3b^2}, \frac{b}{a^2-3b^2} \in \mathbb{Q}$.

Problem 5

In this problem we show $U(\mathbb{Z}[x]) = \{\pm 1\} = U(\mathbb{Z})$ (the last equality is done in Problem 2, part d). Take $a \in U(\mathbb{Z}) \subseteq \mathbb{Z}[x]$. Then $\exists b \in \mathbb{Z} \subseteq \mathbb{Z}[x]$ such that ab = 1 = ba, and so $a \in U(\mathbb{Z}[x])$, and $\{\pm 1\} \subseteq U(\mathbb{Z}) \subseteq U(\mathbb{Z}[x])$. First note that, given as \mathbb{Z} is an integral domain, there are no zero divisors. Take $p(x) := a_n x^n + \cdots + a_0 \in U(\mathbb{Z}[x])$, where $a_n \neq 0$ (we can do this as zero is not invertible, so there will always be a maximum non-zero coefficient). Then we know $\exists q(x) := b_m x^m + \cdots + b_0 \in U(\mathbb{Z}[x])$ such that p(x)q(x) = q(x)p(x) = 1 (and again as with $p(x), b_m \neq 0$). Assume for contradiction that n > 0. Then, ignoring the intermediate coefficients for now, we see $a_n b_m x^{n+m} = 0$, and so $a_n b_m = 0$. As $a_n \neq 0 \neq b_m$, and \mathbb{Z} has no zero divisors, we have a contradiction, and therefore, n = 0. A similar argument shows m = 0. Therefore, $p(x) = a_0, q(x) = b_0$, and $a_0b_0 = 1$. But as $a_0 \in \mathbb{Z}$, this implies $a_0 \in U(\mathbb{Z})$, so $U(\mathbb{Z}) \subseteq U(\mathbb{Z}[x])$.

Now consider $2x + 1 \in \mathbb{Z}_8[x]$. We will see $p(x) = 4x^2 + 6x + 1$ is $(2x + 1)^{-1}$. As $\mathbb{Z}_8[x]$ is commutative, it suffices to show (2x + 1)p(x) = 1 (as 1 is the unity of $\mathbb{Z}_8[x]$). We do this by computation- $(2x + 1)(4x^2 + 6x + 1) = 8x^3 + (4 + 12)x^2 + (2 + 6)x + 1 = 8x^3 + 16x^2 + 8x + 1$, and as $16 \equiv 8 \equiv 0 \mod 8$, $(2x + 1)(4x^2 + 6x + 1) = 1$. \Box

Problem 6

First note that as $1_A \in A$, $a_0 \cdot 1_A \cdot a_0 = a_0^2 = 1 \in B$, and so $B \neq \emptyset$. Take $b_1, b_2 \in B$. By the subring criterion, it suffices to check $b_1 - b_2, b_1 \cdot b_2 \in B$. We know $b_1 = a_0b'_1a_0, b_2 = a_0b'_2a_0$, for some $b'_1, b'_2 \in A$. Now consider $b_1 \cdot b_2 = (a_0b'_1a_0) \cdot (a_0b'_2a_0) = a_0(b'_1a_0a_0b'_2)a_0 = a_0(b'_1b'_2)a_0$ as multiplication is associative and $a_0^2 = 1$. As $b'_1b'_2 \in A$, we see $b_1 \cdot b_2 \in B$. Now consider $b_1 - b_2 = a_0b'_1a_0 - a_0b'_2a_0 = a_0(b'_1a_0 - b'_2a_0) = a_0(b'_1 - b'_2)a_0 \in B$ as A has distribution and $b'_1 - b'_2 \in A$. Thus, B is a subring. \Box Side note: $a_0^2 = 1 \implies a_0 = a_0^{-1}$, so $B = a_0Aa_0^{-1}$, though note that A isn't a multiplicative group.