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Problem 1
By Fermat’s Little Theorem, ∀α ∈ Z/pZ, αp = α. Therefore, αp − α+ 1 = 1, for any α ∈ Z/pZ, and so this

polynomial can have no roots in Z/pZ.

Problem 2

(a) Clearly, as 1 · 1 = (−1)2 = (i)(−i) = 1, RHS ⊆ LHS. Now take a+ bi ∈ U(Z[i]). Then ∃c+ di ∈ Z[i]

such that (a + bi)(c + di) = 1 =⇒ N(a + bi)N(c + di) = 1, and so (a2 + b2)(c2 + d2) = 1, and

a2 + b2, c2 + d2 ∈ Z. Therefore, a2 + b2 = 1, by unique factorization in the integers. But as a, b ∈ Z,

this precisely implies a2 = 0 and b2 = 1 or a2 = 1 and b2 = 0. In the first case, b = ±1, and

in the second a = ±1, so a + bi ∈ {±1,±i} and the claim is shown. Note that this also implies

U(Z[i]) = {a+ bi ∈ Z[i] | a2 + b2 = 1}.

(b) Note that Z[i] is an integral domain, so it has no zero divisors. Let a0 +b0i ∈ Z[i] such that a20 +b20 = p,

p an odd prime. Note that a0 + b0i /∈ {±1,±i, 0} as 1 and 0 are not primes. Suppose a0 + b0i =

(a + bi)(c + di), for some c + di, a + bi ∈ Z[i]. To show a0 + b0i is irreducible, it suffices to show

either a+ bi ∈ U(Z[i]) or c+ di ∈ U(Z[i]). Taking norms, we see p = a20 + b20 = (a2 + b2)(c2 + d2). As

a2+b2, c2+d2 ∈ Z, p is prime, and the unique factorization in the integers, either a2+b2 = 1, c2+d2 = p

or a2 + b2 = p, c2 + d2 = 1. In either case, one of the elements is of norm one, and so by part a the

claim is shown.

(c) As f is a ring homomorphism, by the First Isormophism Theorem, it suffices to show ker f = 〈2 − i〉
and f is onto. Take a + pZ ∈ Z/5Z. Then f(a) = a + pZ by construction, and so f is surjective.

Note that N(2 − i) = 22 + 12 = 5, and so by part b 2 − i is irreducible in Z[i]. Further, f(2 − i) =

(2−2)+pZ = 0+pZ, and so 2−i ∈ ker f . As Z[i] is a PID, ker f = 〈a+bi〉, for some a+bi ∈ Z[i]. Note

that a+ bi /∈ U(Z[i]), as otherwise this map would be the zero map, a contradiction as f is surjective.

Therefore, 2 − i = (c + di)(a + bi) for some c + di ∈ Z[i], and as 2 − i is irreducible, c + di ∈ U(Z[i])

and we have 2− i ∈ 〈a+ bi〉 by above, and a+ bi = (c+ di)−1(2− i), so a+ bi ∈ 〈2− i〉 and thus the

two ideals are equal. Alternatively, as Z[i] is a PID and 2− i is irreducible, 〈2− i〉 is maximal and as

we know ker f 6= Z[i], we see 〈2− i〉 ⊆ ker f =⇒ 〈2− i〉 = ker f .

Problem 3
Note: on this problem, you can use the larger theorem stated in the following, but you could not use

the smaller lemma about irreducible polynomials, as the problem is meant to reprove this. By the main

theorem from class, as α ∈ C is algebraic (as p0(α) = 0), ∃mα(x) ∈ Q[x] such that mα(x) is irreducible,

Imφα = {c0 + c1α + c2α
2 + · · · + cn−1α

n−1 | ci ∈ Q∀i}, where n := degmα(x), 〈mα(x)〉 = kerφα, and

Q[x]/ kerφα ' Imφα is a field.

(a) We have p0(α) = 0 by assumption, so p0(x) ∈ kerφα. So we have p0(x) = h(x)mα(x), for some

h(x) ∈ Q[x]. As mα(x) is irreducible, it cannot be a unit by definition. As p0(x) is irreducible,

this implies h(x) ∈ U(Q[x]). Therefore, h(x)−1p0(x) = mα(x), and so mα(x) ∈ 〈p0(x)〉, and thus,

〈p0(x)〉 = 〈mα(x)〉 = kerφα, and the claim is shown. Alternatively, as Q[x] is a PID and p0(x) is

irreducible, 〈p0(x)〉 is maximal and as we know kerφα 6= Q[x] (because φα(1) = 1), we see 〈p0(x)〉 ⊆
kerφα =⇒ 〈p0(x)〉 = kerφα.

(b) By part a, we know p0(x) = h(x)mα(x), where h(x) ∈ U(Q[x]). As U(Q[x]) = Q\{0} (as Q is a field),

we see 4 = deg p0(x) = degmα(x), and so part b follows from the statement of the main theorem

above.

(c) By part a and b, this follows from the First Isomorphism Theorem.

(d) As kerφα = 〈p0(x)〉, and Q[x]/ kerφα is a field, Q[x]/〈p0(x)〉 ' {c0 + c1α+ c2α
2 + c3α

3 | ci ∈ Q∀i} is

a field.
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