Math 103B Midterm 1 Solution

Haiyu Huang April 26, 2018

1

Make the computation in the following ring.
(a) $(13,3)(12,24)$ in $\mathbb{Z}_{26} \times \mathbb{Z}_{48}$.

$$
(13,3)(12,24)=(26 \cdot 6,2 \cdot 24+24)=(0,24) .
$$

(b) $(1-3 x)^{-1}$ in $\mathbb{Z}_{27}[x]$.

Note that $(3 x)^{3}=27 x^{3}=0$. So,

$$
1=1-(3 x)^{3}=(1-3 x)\left(1+3 x+(3 x)^{2}\right)=(1-3 x)\left(1+3 x+9 x^{2}\right)
$$

So, $(1-3 x)^{-1}=1+3 x+9 x^{2}$.
(c) $\left(3^{-1}\right)(2)$ in \mathbb{Z}_{11}.
$3 \cdot 4=12=1$ implies $3^{-1}=4$. So $\left(3^{-1}\right)(2)=4 \cdot 2=8$.

2

Find the characteristic of the following ring. Justify your answer.
(a) $\mathbb{Z}_{6} \times \mathbb{Z}_{10} \times \mathbb{Z}_{15}$.

Since it is a finite unital ring, $\operatorname{char}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{10} \times \mathbb{Z}_{15}\right)$ is the additive order of $(1,1,1) . m(1,1,1)=0$ iff $6|m, 10| m, 15 \mid m$ iff lcm $(6,10,16)=30 \mid m$. Hence, $\operatorname{char}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{10} \times \mathbb{Z}_{15}\right)=30$.
(b) $2 \mathbb{Z}_{6}$.
$3\left(2 \mathbb{Z}_{6}\right)=6 \mathbb{Z}_{6}=0$ so $\operatorname{char}\left(2 \mathbb{Z}_{6}\right) \mid 3$. Since 3 is prime and $2 \mathbb{Z}_{6} \neq 0, \operatorname{char}\left(2 \mathbb{Z}_{6}\right)=3$. Alternatively, we can find the least common multiple of the additive orders of all the elements in $2 \mathbb{Z}_{6}=$ $\{0,2,4\}$.

3

Suppose D is a finite field.
(a) Prove the characteristic of D is prime.

Proof. Since D is a finite unital ring, $\operatorname{char}(D)=\operatorname{ord}(1)<\infty$. Suppose to the contrary that $\operatorname{ord}(1)=a b$ for some $1<a, b<\operatorname{ord}(1)$. Then

$$
0=(a b) 1=(\underbrace{1+1+\cdots+1}_{a \text { times }})(\underbrace{1+1+\cdots+1}_{b \text { times }})=(a 1)(b 1) .
$$

Since D is a finite field, it is an integral domain so $a 1=0$ or $b 1=0$, contradicting ord $(1)=$ $a b$.
(b) Suppose $\operatorname{char}(D)=p$. Prove that $f: D \rightarrow D, f(x)=x^{p}$ is a ring isomorphism. (You do not need to prove $p \left\lvert\,\binom{ p}{i}\right.$ for $0<i<p$.)

Proof. - f is a ring homomorphism:

$$
f(x y)=(x y)^{p}=x^{p} y^{p}=f(x) f(y)
$$

by commutativity and

$$
f(x+y)=(x+y)^{p}=\sum_{i=0}^{p}\binom{p}{i} x^{i} y^{p-i}=x^{p}+y^{p}=f(x)+f(y) .
$$

- f is injective: It suffices to show the kernel of f is trivial. $x \in \operatorname{ker} f \Longleftrightarrow f(x)=x^{p}=$ $0 \Longleftrightarrow x=0$ as D has no zero-divisors.
- f is surjective: Since f is finite and $f: D \rightarrow D$ is injective, by the pigeonhole principle it is surjective.
Hence f is an isomorphism.

4

$\mathbb{Q}[\sqrt{3}]$ is a subring of \mathbb{R}. Show it is a field.
Proof. It suffices to show any nonzero element is invertible. Let $a+b \sqrt{3} \in \mathbb{Q}[\sqrt{3}] \backslash\{0\}$. Then $a-b \sqrt{3} \neq 0$ as $\sqrt{3} \notin \mathbb{Q}$ and $a \neq 0$ or $b \neq 0$. So $a^{2}-3 b^{2}=(a+b \sqrt{3})(a-b \sqrt{3}) \neq 0$. Since \mathbb{R} is a field, $\frac{1}{a+b \sqrt{3}} \in \mathbb{R}$ exists and

$$
\frac{1}{a+b \sqrt{3}}=\frac{1}{a+b \sqrt{3}} \cdot \frac{a-b \sqrt{3}}{a-b \sqrt{3}}=\frac{a}{a^{2}-3 b^{2}}+\frac{-b}{a^{2}-3 b^{2}} \sqrt{3} \in \mathbb{Q}[\sqrt{3}] .
$$

Therefore, $\mathbb{Q}[\sqrt{3}]$ is a field.

