Math 103B Midterm 1 Solution

Haiyu Huang April 26, 2018

1

Make the computation in the following ring.

(a) (13,3)(12,24) in $\mathbb{Z}_{26} \times \mathbb{Z}_{48}$.

 $(13,3)(12,24) = (26 \cdot 6, 2 \cdot 24 + 24) = (0,24).$

(b) $(1-3x)^{-1}$ in $\mathbb{Z}_{27}[x]$. Note that $(3x)^3 = 27x^3 = 0$. So,

 $1 = 1 - (3x)^3 = (1 - 3x)(1 + 3x + (3x)^2) = (1 - 3x)(1 + 3x + 9x^2).$

So, $(1-3x)^{-1} = 1 + 3x + 9x^2$.

(c) $(3^{-1})(2)$ in \mathbb{Z}_{11} .

 $3 \cdot 4 = 12 = 1$ implies $3^{-1} = 4$. So $(3^{-1})(2) = 4 \cdot 2 = 8$.

2

Find the characteristic of the following ring. Justify your answer.

(a) $\mathbb{Z}_6 \times \mathbb{Z}_{10} \times \mathbb{Z}_{15}$.

Since it is a finite unital ring, $char(\mathbb{Z}_6 \times \mathbb{Z}_{10} \times \mathbb{Z}_{15})$ is the additive order of (1, 1, 1). m(1, 1, 1) = 0 iff 6 | m, 10 | m, 15 | m iff lcm(6, 10, 16) = 30 | m. Hence, $char(\mathbb{Z}_6 \times \mathbb{Z}_{10} \times \mathbb{Z}_{15}) = 30$.

(b) $2\mathbb{Z}_6$.

 $3(2\mathbb{Z}_6) = 6\mathbb{Z}_6 = 0$ so char $(2\mathbb{Z}_6) | 3$. Since 3 is prime and $2\mathbb{Z}_6 \neq 0$, char $(2\mathbb{Z}_6) = 3$. Alternatively, we can find the least common multiple of the additive orders of all the elements in $2\mathbb{Z}_6 = \{0, 2, 4\}$.

3

Suppose *D* is a finite field.

(a) Prove the characteristic of *D* is prime.

Proof. Since *D* is a finite unital ring, $char(D) = ord(1) < \infty$. Suppose to the contrary that ord(1) = ab for some 1 < a, b < ord(1). Then

$$0 = (ab)1 = (\underbrace{1+1+\dots+1}_{a \text{ times}})(\underbrace{1+1+\dots+1}_{b \text{ times}}) = (a1)(b1).$$

Since *D* is a finite field, it is an integral domain so a1 = 0 or b1 = 0, contradicting ord(1) = ab.

(b) Suppose char(D) = p. Prove that $f : D \to D$, $f(x) = x^p$ is a ring isomorphism. (You do not need to prove $p \mid {p \choose i}$ for 0 < i < p.)

Proof. • *f* is a ring homomorphism:

$$f(xy) = (xy)^p = x^p y^p = f(x)f(y)$$

by commutativity and

$$f(x+y) = (x+y)^{p} = \sum_{i=0}^{p} {p \choose i} x^{i} y^{p-i} = x^{p} + y^{p} = f(x) + f(y).$$

- *f* is injective: It suffices to show the kernel of *f* is trivial. $x \in \ker f \iff f(x) = x^p = 0 \iff x = 0$ as *D* has no zero-divisors.
- *f* is surjective: Since *f* is finite and $f: D \rightarrow D$ is injective, by the pigeonhole principle it is surjective.

Hence f is an isomorphism.

4

 $\mathbb{Q}[\sqrt{3}]$ is a subring of \mathbb{R} . Show it is a field.

Proof. It suffices to show any nonzero element is invertible. Let $a + b\sqrt{3} \in \mathbb{Q}[\sqrt{3}] \setminus \{0\}$. Then $a - b\sqrt{3} \neq 0$ as $\sqrt{3} \notin \mathbb{Q}$ and $a \neq 0$ or $b \neq 0$. So $a^2 - 3b^2 = (a + b\sqrt{3})(a - b\sqrt{3}) \neq 0$. Since \mathbb{R} is a field, $\frac{1}{a+b\sqrt{3}} \in \mathbb{R}$ exists and

$$\frac{1}{a+b\sqrt{3}} = \frac{1}{a+b\sqrt{3}} \cdot \frac{a-b\sqrt{3}}{a-b\sqrt{3}} = \frac{a}{a^2-3b^2} + \frac{-b}{a^2-3b^2}\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$$

Therefore, $\mathbb{Q}[\sqrt{3}]$ is a field.