Group actions

Tuesday, June 29, 2021 3:29 PM

As it has been mentioned earlier, group theory has been developed to study symmetries of objects. Our meta-example for groups is Sym(X) where X is an "object". Now starting with a group G, we would like to see it it can be view as symmetries of an object. The easiest object is of course just a set X. So having a group G and a set X, are would like to permute elements of X in a way compatible with group operation of G. This brings us to the definition of group Def. Suppose (G, ·) is a group and X is a non-empty set. We say G acts on X via $*:GxX \rightarrow X$ if (a) $\forall x \in X$, $e_{G} * x = x$, (b) $\forall g, g \in G, \chi \in X, \quad g * (g * \chi) = (g, g) * \chi$ Remark. We often use . to denote both the group action and the group operation. Because of (b), it should not cause a serious problem; but you should be aware of this.

Examples of group actions

Tuesday, June 29, 2021

3:29 PM

When a group G acts on a set X via * we write

G X or simply G X.

Ex. Suppose X is a non-empty set. Then the symmetric

group S_X acts on X via $*: S_X \times X \rightarrow X$, $\sigma * \alpha := \sigma(\alpha)$

(we apply or to x; or we say or acts on x.)

 $\frac{Pf}{}$. id. + x = id(x) = x for every $x \in X$

 $= (O_1 \circ O_2)(\chi) = (O_1 \circ O_2) * \chi.$

Ex. Suppose (G.) is a group. Then G. G. via left

multiplication; that means $q * x := q \cdot x$.

 $\frac{PR}{G} \cdot e \star x = e \cdot x = x$ (neutral element)

 $g_1 * (g_2 * x) = g_1 * (g_2 * x) = g_1 * (g_2 * x)$

 $=(g,g)\cdot\chi$ (associative)

 $= (q_1 \cdot q_2) * \chi$

Ex. Suppose (G,.) is a group. Then G. G. via conjugation;

that means $g * x := g \cdot x \cdot g^{-1}$.

Group actions and permutations

Tuesday, June 29, 2021

$$\frac{79}{4} \cdot e_{2} * x = e_{2} \cdot x \cdot e_{2}^{-1} = x$$

$$= g_1 \cdot (g_2 \cdot \chi \cdot g_2^{-1}) \cdot g_1^{-1}$$

$$= (q_1 \cdot q_2) \cdot \times \cdot (q_2^{-1} \cdot q_1^{-1})$$

$$= (q_1 \cdot q_2) \cdot \times \cdot (q_1 \cdot q_2)^{-1}$$

$$=(q_1\cdot q_2) \times x$$

Suppose G X. Then, for every $g \in G$, $x \mapsto g * x$

is a function from X to X. Let's call this function of

So
$$g: X \rightarrow X$$
, $g(x) = g * x$. Notice that

$$\sigma(x) = e_{x} \times = x$$
, and so $\sigma_{e_{x}} = id$. and

$$\forall g, g \in G, \quad (g \cdot \sigma)(x) = g(\sigma(x))$$

$$= \mathcal{O}_{1}(\mathfrak{g}_{2} * \chi)$$

$$= g_1 * (g_2 * x)$$

$$= (g \cdot g) * \chi = 0 (x).$$

In particular, og og 1 = og = id and similarly

$$\sigma_{g^{-1}} \cdot \sigma_g = id$$
. Therefore $\forall g \in G$, $\sigma_g: X \longrightarrow X$ is a bijection.

	Group actions and permutations Guesday, June 29, 2021 3:29 PM
-	This means if $G \xrightarrow{\chi} X$ and $G: X \longrightarrow X$, $G(X) := G \times X$,
	then of ESX.
	Theorem Suppose G X. Then
	$f: G \to S_X$, $f(g) := g$
	is a group homomorphism.
Q	P. We have already proved that for every geG, or & Sx,
ď	and so f is well-defined.
•	$\forall q_1, q_2, f(q_1, q_2) = \sigma_1 = \sigma_2 = \sigma_2 = f(q_1) \circ f(q_2),$
	(we showed this earlier) and so f is a group homomorphism.
	Ex. If G (X and H is a subgroup of G, then H(X).
	Pf. Since H is a subgroup of G, CH=CG. Hence for every
-	$x \in X$, $e_H * x = e_T * x = x$. For every $h_t, h_z \in H$,
	$h_1*(h_2*x)=(h_1\cdot h_2)*x$ (as h_1 's are in G and $H\leq G$.).
	• Suppose or∈ S _n . Then <o>> 31,2,,ng. This is</o>
	because $S_n \cap \{1,2,,n\}$ via $T * i := T(i)$. Let's recall

Group actions and orbits Tuesday, June 29, 2021 3:29 PM
that to understand cycle decomposition of or, we follow the
flow, and that means for every a = { 1,2,,n}, we
considered $a \rightarrow \sigma(a) \rightarrow \sigma^{2}(a) \rightarrow \cdots \rightarrow \sigma^{m-1}(a)$
We can interpret this in terms of the action of <0> on
$21,,n$: $a \rightarrow 0*a \rightarrow 0^2*a \rightarrow \rightarrow 0^{m-1}*a$
Hence support of this cycle is
$\frac{3}{2}o^{i} \times a \mid i \in \mathbb{Z} $
All the points that we can get to, using the action of <0>
on 21,2, ,ng. We can interpret this as saying: if we
only symmetries that are induced by <0>, what points are
similar to a? The answer is $20^{1} + a + 1 = \mathbb{Z}$. This
brings us to the definition of G-orbits of an action
G A X
Def. Suppose G X, we say x, y X are G-similar
and write $x \sim y$ if $\exists g \in G$, $y = g \times x$. The set of
all the points that are G-similar to x is denoted by

Group actions and orbits Tuesday, June 29, 2021 3:29 PM
G+x. We call G+x the G-orbit of x, we sametimes
denote G*x by O.
Theorem Suppose G X Then
(1) G-similarity is an equivalent relation.
2) The G-orbit G*x of x is the equivalent class of
x for the G-similarity relation.
J J J J J J J J J J J J J J J J J J J
(3) The set \{G*x xeX} of G-orbits is a partition
of X.
PP. (1) We have to show that ~ is reflexive, symmetric, and
transitive.

Reflexive $x \sim_{G} x^{?} \qquad x \sim_{G} * x \Rightarrow x \sim x$
Symmetric. x~y ? y~x.
$x \sim_{G} y \Rightarrow \exists g \in G, y = g * x$
$\Rightarrow g^{-1} * y = g^{-1} * (g * x) = (g^{-1} \cdot g) * x$
- 1
= e ₊ x = x
G-
$\Rightarrow y \sim_{\mathbf{C}} x$.

Orbits and partition

Tuesday, June 29, 2021

Transitive
$$\chi \sim_{G} y \stackrel{?}{\Longrightarrow} \chi \sim_{G} z$$

$$y \sim_{G} z \Rightarrow \exists g' \in G, z = g' * y$$

$$z = g' * y = g' * (g * x) = (g' \cdot g) * x \Rightarrow$$

$$\mathcal{X} \sim_{\mathbf{G}} Z$$

(2) Let
$$[X]$$
 be the equivalent class of X with respect to

to show
$$[x]_{\sim_{\mathcal{G}}} = \mathcal{G} * x$$
.

$$y \in [x] \rightarrow y \sim_{\mathcal{C}} x \Rightarrow x \sim_{\mathcal{C}} y$$

$$\Rightarrow \exists g \in G, y = g * x$$

$$\Rightarrow$$
 y \in G $\star x$. Hence $[x] \subseteq G \star x$. (1)

$$\Rightarrow Z \sim \mathcal{X} \Rightarrow Z \in [X]$$

By (1) and (11),
$$[x]_{v_{\mathbf{q}}} = G * x$$
.

Tuesday, June 29, 2021 3:29 PM	
(3) We want to show that {G*x x ∈ X 3 is a partition	n
·	
of X. By the 2nd part $\frac{2G*x}{x\in X}=\frac{2[x]}{x\in X}$.	
Since ~ is an equivalent relation on X, & IXI /x \X	ľS
a partition of X. This completes the proof.	3
Def. Suppose GAX. The set 3G*x x \ X \ af a	ı İl
G-orbits is denoted by X.	
Since X is a partition of X, we have	
$ X = \sum_{G * x \in X} G * x .$	
G*xe X	
Let's go over some of our group action examples and discribe	their
orbits.	
S _n A 31,2,,n3. For every a, the transposition (1,a)	
sends 1 to a. Hence $(1,a) * 1 = a$, which means a is in	
the S-orbit of 1. For every point a, 1~a. Theref	ore
there is only one Sh-orbit and \$1,2,,ng has only	one
element.	

Orbits and partition

Examples of orbits

Tuesday, June 29, 2021

We say G acts transitively on X if there is only one G-orbit;

that means for every x, y \in X, there is g \in G such that

y= 9 * x.

(Every point is G_similar to another point of X.)

Ex. $S_n \cap \{1,2,...,n\}$, O*a := O(a) is a transitive action.

Ex. G. G. by left multiplication; that means g * x := g · x.

For every $y \in G$, $(y \cdot x^{-1}) \times x = (y \cdot x^{-1}) \cdot x = y$, and so

y = G.x. Hence G. G. by left multiplication is transitive

Ex. G \sim G by conjugation; that means $g * x := g \cdot x \cdot g^{-1}$

Then the G-orbit G*x of x is $\frac{3}{2}g*x \mid g \in G^{\frac{3}{2}}$, and so

is the set of all conjugates of x. The set of all the

conjugates of x is called the conjugacy class of x, and it is

denoted by Cl(x). Since &G*x | xeG} is a partition

of G, we conclude that conjugacy classes form a partition

of G

Cosets of a subgroup Tuesday, June 29, 2021 3:29 PM

Ex. Suppose (G, \cdot) is a group and H is a subgroup of G.

Then HQG by left multiplication. This is the case

because G G by left multiplication and H is a subgroup

of G. The H-orbit of x is

 $H*x := \frac{3}{2}h*x|heH3 = \frac{3}{2}h\cdot x|heH3$.

In this case the H-orbit is denoted by H.x. Since the

H-orbits form a partition of G, we conclude that

HG = { H.x | xeG3 is a partition of G.

H-x is called a right coset of H.

Theorem. Suppose (G, \cdot) is a group and H is a subgroup of G.

(1) $H \cdot x = H \cdot y \iff x \cdot y^{-1} \in H$

(2) $H \rightarrow H \cdot x$, $h \mapsto h \cdot x$ is a bijection and so $|H| = |H \cdot x|$.

3) If G is a finite group, then |G| = |G| |H|.

PP (1) Let's recall that $H \cdot x = H * x$ is the H-orbit of x

and H*x is the equivalent class of x under H-similarity

relation; that means $H*x = [x]_{xy}$. Therefor $H \cdot x = H \cdot y$

Cosets of a subgroup Tuesday, June 29, 2021 3:29 PM
implies [x] = [y]. We have seen that two equivalent
classes [x] and [y] are equal exactly when x~y. Thus
classes [x] and Ly] are Equal exactly when xing. Thus
H·x=H·y \ y is H-similar to x
\Rightarrow y.x ⁻¹ = h for some he H.
(Because the above proof many parts involving earlier results, let's
see another argument:
H·x=H·y => e·x eH·y => x eH·y
⇒ ∃heH, x=h·y
~
\Rightarrow $\exists h \in H$, $x \cdot y^{-1} = h$
$\Rightarrow x \cdot y^{-1} \in H.$
Suppose $x \cdot y^{-1} = h \in H$. We want to show $H \cdot x = H \cdot y$.
To show equality of these two sets, we show that every
element of H·y is in H·x, and vice versa.

ZEH.y => BheH, Z=h.y

Cosets of a subgroup

Tuesday, June 29, 2021

$$\Rightarrow z = h \cdot y = h \cdot h_{\bullet}^{-1} \cdot h_{\bullet} \cdot y$$

$$= (h \cdot h_{\bullet}^{-1}) \cdot x \cdot y^{-1} \cdot y$$

$$= (h \cdot h_{\bullet}^{-1}) \cdot x \in H \cdot x$$

$$= (h \cdot h_{\bullet}) \cdot (x \cdot y^{-1})^{-1} \cdot x$$

$$= (h \cdot h_{\bullet}) \cdot (x \cdot y^{-1})^{-1} \cdot x$$

$$= (h \cdot h_{\bullet}) \cdot (x \cdot y^{-1})^{-1} \cdot x$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y \in H \cdot y$$

$$= (h \cdot h_{\bullet}) \cdot y$$

Cosets of a subgroup and Lagrange's theorem Tuesday, June 29, 2021 3:29 PM
Since IG is a partition of G, we have
**
$ G = \sum_{H \cdot x} H \cdot x . \qquad (I)$
H.XE
By the previous part, $ H \cdot x = H $ for every $x \in G$. Hence
by (t), we have
1G1= \(\sum_{H\\ x\in H} \) = \(\sum_{H\\ \text{H}} \)
Def. Suppose H is a subgroup of G. The cardinality HG
of the set of all right H-cosets is called the index of H in G,
and it is denoted by [G:H].
Theorem (Lagrange) Suppose H is a subgroup of G. Then
IGI = [G:H] HI;
in particular IHI IGI.
Here is an important corollary of Lagrange's theorem.
Corollary. Suppose G is a finite group. Then, for every geG,
$o(g) \mid IGI$, and so $g^{ G } = e_{G}$
(9) 161, and 50 9 = 6.
Pf. We know that $ \langle g \rangle = o(g)$. By Lagrange's theorem,

Lagrange's theorem and Euler's theorem Tuesday, June 29, 2021 3:29 PM
1<9>1 1G1, and so o(9) 1G1.
We know that if o(q)=d, then
g ^m =e _G ↔ d m.
Because o(g) (G), we deduce that $g^{ G } = e_G$.
Here is a nice application of Lagrange's theorem to classical
number theory.
Theorem (Euler) Suppose n is a positive integer, $a \in \mathbb{Z}$, and
$gcd(a,n)=1$. Then $a^{\phi(n)}\equiv 1 \pmod{n}$.
$\frac{P_{+}}{P_{+}}$. Consider the group (Z_{n}^{\times}, \cdot) . Since $gcd(a, n) = 1$,
$[a]_n \in \mathbb{Z}_n^{\times}$. Hence $[a]_n^{ \mathbb{Z}_n } = [1]_n$. Let's recall that
$ Z_n^x = \phi(n)$. Therefore $[a]_n = [1]_n$. Hence
$[a^{\pm (n)}]_n = [1]_n$, which implies that $a^{\pm (n)} \equiv 1 \pmod{n}$.
Theorem (Fermat's little theorem) Suppose p is prime. Then
for every $a \in \mathbb{Z}$, $a \equiv a \pmod{p}$.
$\frac{P_{+}}{P_{+}}$ If $a = o \pmod{p}$, then $a = o = a$. If $a \neq o$, then
gcd $(a,p)=1$, and so $\alpha=1 \pmod{p}$. Since $\Phi(p)=p-1$,

Examples of index of subgroups

Tuesday, June 29, 2021

 $a^{P-1} = 1 \pmod{p}$ if $a \neq 0$. Multiply both sides by a, we

obtain $a^p \equiv a \pmod{p}$.

Ex. Find |An | and [Sn: An] for n > 2.

Solution. Claim If σ is even, then $A_n \sigma = A_n$, and if

 σ is odd, then $A_n \sigma = A_n (1,2)$.

If of claim. Let's recall that $Hx = Hy \iff xy^{-1} \in H$.

 $\sigma \in A_n \Rightarrow \sigma \cdot id^{-1} \in A_n \Rightarrow A_n \sigma = A_n id \Rightarrow A_n \sigma = A_n$

 σ is odd \Rightarrow $sgn(\sigma) = -1$

 \Rightarrow sgn $(\sigma(1,2))$ = sgn (σ) sgn (1,2)

= (-1)(-1) = 1

 \Rightarrow $O(1,2) \in A_n$

 \Rightarrow $organize{0.5}{\circ} organize{0.5}{\circ}

 $\Rightarrow A_n \circ = A_n(1,2).$

Therefore $A_n S_n = \{A_n \sigma \mid \sigma \in S_n \} = \{A_n, A_n (1,2)\},$ which

implies $|S_n| = 2$. Thus $[S_n: A_n] = 2$. By Lagrange's thin,

 $|S_n| = [S_n : A_n] |A_n|$. We deduce that $|A_n| = \frac{n!}{2}$

Examples of index of subgroups

Tuesday, June 29, 2021

$$\sigma: \mathbb{Z}_n \to \mathbb{Z}_n$$
, $\sigma(x) = x + [1]_n$ and $\tau: \mathbb{Z}_n \to \mathbb{Z}_n$, $\tau(x) = -x$.

Find
$$[D_2:\langle\sigma\rangle]$$
 and $[D_2:\langle\tau\rangle]$.

Solution. Notice that
$$\sigma^m(x) = x + [m]_n$$
, and so $\sigma^m = id$.

exactly when
$$n \mid m$$
. Hence $o(\sigma) = n$. Therefore $|\langle \sigma \rangle| = n$.

Thus
$$D_{2n}:\langle\sigma\rangle=\frac{|D_{2n}|}{|\langle\sigma\rangle|}=\frac{2n}{n}=2$$
.

. Notice that
$$T^2 = id$$
, and so $o(T) = 2$. Thus $|\langle T \rangle| = 2$.

Therefore
$$[D_2:\langle T \rangle] = \frac{|D_{2n}|}{|\langle T \rangle|} = \frac{2n}{2} = n$$
.